期刊文献+

基于L1-Graph表示的标记传播多观测样本分类算法 被引量:2

Label Propagation Classification Algorithm of Multiple Observation Sets Based on L1-Graph Representation
下载PDF
导出
摘要 同类样本被认为是分布在同一个高维观测空间的低维流形上,针对多观测样本分类如何利用这一流形结构的问题,提出基于L1-Graph表示的标记传播多观测样本分类算法。首先基于稀疏表示的思路构造L1-Graph,进而得到样本之间的相似度矩阵,然后在半监督分类标记传播算法的基础上,限制所有的观测样本都属于同一个类别的条件下,得到一个具有特殊结构的类标矩阵,最后把寻找最优类标矩阵的计算转化为离散目标函数优化问题,进而计算出测试样本所属类别。在USPS手写体数据库、ETH-80物体识别数据库以及Cropped Yale人脸识别数据库上进行了一系列实验,实验结果表明了本文提出方法的可行性和有效性。 The samples in each class set can be supposed to distribute on a same low-dimensional manifold of the high-dimensional observation space.With regard to how to take advantage of this manifold structure for the effective classification of the multiple observation sets,label propagation classification algorithm of multiple observation sets based on L1 -Graph representation is proposed in this paper.Based on sparse representation to construct L1 -Graph and obtains a similarity matrix between samples as the first step.All observation images belong to a same class is restricted that to obtain a label matrix of special structure on the basis of semi-supervised label propagation algorithm.Lastly,transform the computation of the optimization label matrix to an optimization problem of discrete object function and obtains the class of the test samples.Experiments on the USPS handwritten digit database,ETH-80 object recognition database and Cropped Yale face recognition database show that the proposed method is valid and efficient.
出处 《信号处理》 CSCD 北大核心 2011年第9期1325-1330,共6页 Journal of Signal Processing
基金 国家自然科学基金(61071199) 河北省自然科学基金(F2010001297) 中国博士后自然科学基金(20080440124) 第二批中国博士后基金特别资助(200902356)
关键词 稀疏表示 L1-Graph 标记传播 多观测样本分类 Sparse Representation L1-Graph Label Propagation Classification of Multiple Observation Sets
  • 相关文献

参考文献16

  • 1Stauffer C. Minimally-supervised classification using multi- ple observation sets [ A ]. IEEE International Conference on Computer Vision(ICCV) , 2003:297-304.
  • 2Fukui K, Yamaguchi O. Face recognition using multi-view- point patterns for robot vision[ A]. International Symposi- um on Robotics Research, 2005,15 : 192-201.
  • 3Yamaguchi O, Fukui K, Maeda K. Face recognition using temporal image sequence[ A]. IEEE International Confer- ence on Automatic Face and Gesture Recognition, 199g: 318-323.
  • 4Sakano H, Mukawa N. Kernel mutual subspace method for robust facial image recognition [ A ]. Fourth International Conference on Knowledge-based Intelligent Engineering Systems and Allied Technologies, 2000,1 : 245-248.
  • 5Wang R. P, Shah S. G, Chen X. L, Gao W. Manifold- manifold distance with application to face recognition based on image set [ A ]. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2008 : 1 - 8.
  • 6Chu W. S, Chen J. C, Lien J. J. Kernel discriminant trans- formation for image set-based face recognition [ J ]. Pattern Recognition, 2011,44 ( 8 ) : 1567-1580.
  • 7Cevikalp H, Triggs B. Face Recognition Based on Image Sets[A]. IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR), 2010, 2567-2573.
  • 8Shakhnarovich G, Fisher J. W, Darrel T. Face recognition from long-term observations [ A ]. European Conference on Computer Vision ( ECCV), 2002,3 : 851 - 868.
  • 9Arandjelovie O, Shakhnarovieh G, Fisher J, Cipolla R, Darrell T. Face recognition with image sets using manifold density divergence [ A]. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2005,1 : 581-588.
  • 10Kokiopoulou E, Pirillos S, Frossard P. Graph-based clas- sification of multiple observation sets [ J ]. Pattern Recogni- tion, 2010,43 (12) :3988-3997.

二级参考文献14

  • 1Yu SX, Shi J. Segmentation given partial grouping constraints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2): 173-183.
  • 2Hertz T, Shental N, Bar-Hillel A, Weinshall D. Enhancing image and video retrieval: Learning via equivalence constraint. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 2003.668-674.
  • 3Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley CE, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, 2001. 577-584.
  • 4Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. Sydney: Morgan Kaufmann Publishers, 2002. 307-314.
  • 5Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. Morgan Kaufmann Publishers, 2000. 1103-1110.
  • 6Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B. Learning with local and global consistency. In: Thrun S, Saul L, SchSlkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004. 321-328.
  • 7Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905.
  • 8Gu M, Zha H, Ding C, He X, Simon H. Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering. Technical Report, CSE-01-007, Penn State University, 2001.
  • 9Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems (NIPS) 14. Cambridge: MIT Press, 2002, 894-856.
  • 10Meila M, Xu L. Multiway cuts and spectral clustering. Technical Report, 442, University of Washington, 2004.

共引文献93

同被引文献36

  • 1Kim T K, Kittler J, Cipolla R. On-line Learning of Mutually Orthogonal Subspaces for Face Recognition by Image Sets [ J]. IEEE Transactions on Image Pro- cessing, 2010,19(4):1067-1074.
  • 2Sanderson C, Lovell B C, Multi-region probabilistie histo- grams for robust and sealable identity inference[ C ]. Lec- ture Notes in Computer Science (LNCS) , 2009,5558 : 199 -208.
  • 3Shakhnarovich G, Fisher J W, Darrel T. Face recognition from long-term observations[ C ]. European Conference on Computer Vision ( ECCV ) , 2002,3 : 851 - 868.
  • 4Arandjelovic O, Shakhnarovich G, Fisher J, Cipolla R, Darrell T. Face recognition with image sets using mani- fold density divergence [ C]. In Proc. Computer Vision and Pattern Recognition (CVPR), 2005,1:581-588.
  • 5Cardinaux, F, Sanderson C, Bengio S. User authentica- tion via adapted statistical models of /hce images [ J ]. IEEE Transactions on Signal Processing, 2006,54 ( 1 ) : 361-373.
  • 6Kittler J, Hatef M, Duin R P W, and Matas J. On com- bining classifiers [ J]. IEEE lYansactions on Pattern A- nalysis and Machine Intelligence, 1998,20(3) :226-239.
  • 7Kokiopoulou E, Pirillos S, Frossard P. Graph-based clas- sification of multiple observation sets[ J]. Pattern Recog- nition, 2010, 43(12) :3988-3997.
  • 8Fukui K, Yamaguchi O. Face recognition using multi- viewpoint patterns for robot vision [ C ]. International Symposium on Robotics Research, 2005,15:192-201.
  • 9Sakano H, Mukawa N. Kernel mutual subspace method for robust facial image recognition [ C ]. Fourth International Conference on Knowledge-based Intelligent Engineering Systems and Allied Technologies, 2000,1:245-248.
  • 10Wang R, Shan S, Chen X, Gao W. Manifold-manifold distance with application to face recognition based on im- age set[C]. In Proc. Computer Vision and Pattern Rec- ognition ( CVPR), 2008,1- 8.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部