期刊文献+

基于D-S证据理论的阵群目标数据关联算法 被引量:3

A Group Target Data Association Algorithm Based On D-S evidence theory
下载PDF
导出
摘要 由于星载传感器获取数据的时间间隔较长,对监视区域中的每个目标进行稳定有效的跟踪是非常困难的。为此,该文将阵群目标作为研究对象,充分利用阵群目标相对稳定的编成、队形特征,提出了一种基于D-S证据理论的阵群目标数据关联算法。首先,建立阵群目标的编成特征和队形特征的描述模型,并据此提取阵群目标的编成及队形特征;其次,通过D-S证据理论,分别利用编成和队形特征建立阵群目标的关联匹配模型,计算相应的基本概率分配函数;最后,对基于编成和队形特征关联的基本概率分配函数进行证据合成,建立综合的基本概率分配函数,并采用二维分配方法实施关联判决,得出关联结果。仿真实验证实了该算法的有效性。 It is difficult to track every target steadily and effectively when the interval of obtaining data from the spaceborne sensor is relatively long.Consequently,a scheme is developed which regards the group targets as the study object and this paper presents a group target data association algorithm based on D-S evidence theory that takes full advantage of their relatively stable composition and array features.Firstly,the composition feature and the array feature of group targets are extracted based on their mathematics model which is established.Secondly,the association matching model of group targets is established that makes use of the composition features and the array features.The basic probability assignment function of the composition features and the array features are calculated respectively based on D-S evidence theory.And finally,the synthetical basic probability assignment function is established after the two basic probability assignment functions are synthesized based on D-S evidence theory and the association result is obtained after making use of the 2D assignment algorithm.The simulation has proved the effectiveness of the algorithm.
出处 《信号处理》 CSCD 北大核心 2011年第9期1347-1351,共5页 Journal of Signal Processing
关键词 阵群目标 编成特征 队形特征 证据理论 group target composition feature array feature evidence theory
  • 相关文献

参考文献7

  • 1Wei-Chuen C, Hian-Beng L, Xu-Hong Xiao, et al. A Group Tracking for Ground Vehicle Convoys [ C ] // Muhisensor, Multisource Information Fusion : Architecture, Algorithms, And Application, Proceedings of SPIE, 21305. USA: SPIE 2005 : 150-161.
  • 2Daoying M, Aidong Z. Core Tracking: An Efficient Ap- proach To Clustering Moving Targets and Tracking Clus- ters [ C ] // Radar Conference, Proceedings of IEEE, 2004. USA: IEEE 2004:117-122.
  • 3张昌芳,杨宏文,胡卫东,郁文贤.基于空间分布特征的阵群目标数据关联算法[J].系统仿真学报,2008,20(22):6074-6077. 被引量:7
  • 4Hsuen-Chyun Shyu, The Group Tracking of Targets on Sea Surface by 2-D Search Radar [ C ] // Radar Conference, 1995, Record of the IEEE International, 1995. USA: IEEE 1995:329-333.
  • 5汤亚波,徐守时.基于D-S证据理论的多源遥感图像目标数据联合关联算法[J].中国科学技术大学学报,2006,36(5):466-471. 被引量:11
  • 6ZHANG Changfang, Ship Formation Recognition Based on Information Fusion of Spaceborne IMINT and ELINT[ C]//Proceedings of SPIE Second International on Space Infor- mation Technology,2007. CHINA : SPIE 6795 : 140-145.
  • 7邓聚龙.灰色控制系统[M].武汉:华中理工大学出版,1997..

二级参考文献11

  • 1王国涛,王东进,陈卫东.基于距离和信息的单目标精确跟踪[J].中国科学技术大学学报,2005,35(2):167-171. 被引量:10
  • 2Blackman S Populi R. Design and Analysis of Modem Tracking Systems [M]. USA: Artech House, 1999.
  • 3Wei-Chuen C, Hian-Beng L, Xu-Hong Xiao, et al. A Group Tracking Algorithm for Ground Vehicle Convoys [C]// Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications, Proceedings of SPIE, 2005. USA: SPIE, 2005:150-161.
  • 4Daoying M, Aidong Z. Core Tracking: An Efficient Approach to Clustering Moving Targets and Tracking Clusters [C]// Radar Conference, Proceedings of IEEE, 2004. USA: IEEE, 2004:117-122.
  • 5孙继祥.现代模式识别[M].长沙:国防科技大学出版社,2002.
  • 6Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing Images Using the Hausdorff Distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1993, 15(9) 850-863.
  • 7Deb S, Yeddanapudi M, Pattipati K, et al. A Generalized S-D Assignment Algorithm for Multisensor-multitarget State Estimation [J]. IEEE Transactions on Aerospace and Electronic Systems (S0018-9251), 1997, 33(2): 523-538.
  • 8Bar-Shalom Y, Kirubarajan T, Gokberk C. Tracking with Classification-aided Multiframe Data Association [J]. IEEE Transactions on Aerospace and Electronic Systems (S0018-9251), 2005, 41(3): 868-878.
  • 9何友,王国宏,彭应宁.多传感器信息融合及应用[M].北京:电子工业出版社,1999.
  • 10CHEN Y M,HUANG H C.Fuzzy logic approach to multisensor data association[J].Mathematics and Computer in Simulation,2000,52:399-412.

共引文献72

同被引文献43

  • 1修建娟,何友,修建华.多目标纯方位定位和跟踪[J].现代雷达,2004,26(8):45-48. 被引量:8
  • 2王杰贵,罗景青,靳学明.无源跟踪中基于灰关联信息融合的概率数据关联算法[J].电子学报,2006,34(3):391-395. 被引量:16
  • 3郭磊,唐斌,刘刚.基于辐射源信号特征信息的JPDA无源跟踪算法[J].电子科技大学学报,2007,36(1):27-29. 被引量:7
  • 4何友,修建娟,张晶炜,等.雷达数据处理及应用[M].2版.北京:国防工业出版社,2009..
  • 5DEB SPATTIPATI K RBARSHALOM Y.A multisensormultitarget data association algorithm for heterogeneous sensors[J].IEEE Transactions on Aerospace and Electronic Systems1993,29(2):560-568..
  • 6NARDONE S CAIDALA V J.Observability criteria for bearingsonly target motion analysis[J].IEEE Transactions on Aerospace and Electronic Systems,AES17,1981(2):162-166..
  • 7BARSHALOM Y.Tracking and data association[M].Boston:Academic Press,1987..
  • 8BEARD MARULAMPALAM S.Comparision of data association algorithms for bearingonly multisensormultitarget tracking[C]//The 10th International Conference on Information Fusion2007:1-7..
  • 9LIDGREN A GGONG K F.Position and velocity estimation via bearing observation [J].IEEE Transactions on Aerospace and Electronic SystemsAES141978:564-577.
  • 10李侠,万山虎.国外雷达装备技术与发展[M].北京:国防大学出版社,2002..

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部