期刊文献+

基于信道感知与监测的传感器网络传输参数自适应调整方法 被引量:2

Adaptively Adjusting Method of Transmission Parameters in Sensor Networks Based On Channel Sensing and Monitoring
下载PDF
导出
摘要 针对预警系统中广域部署在偏远地区的传感器利用现有话音通信线路传输感知信息时,信道具有时变的特征,提出了一种基于信道感知与监测的传输参数自适应调整方法。该方法解决了连接线路在低信噪比下频繁掉线导致的传感器网络采集数据缺失与延时的问题。首先,在数据包传输期间,引入盲信噪比估计方法对信道质量进行感知,通过加权滑窗平均估计结果得到信道质量周期监测的观测值。然后根据卡尔曼滤波原理建立离散化的传输参数自适应调整模型,在保持链路连通状态下,根据信道质量优劣变化自适应地调整传输速率与功率。最后,实验表明,对于野外布设传感器网络的时变信道,该方法能有效保证信息传输的实时性与可靠性。 According to the time-varying characteristic of information transmission channel between sensors distributed on remote and wild regions,which transmit data by existing speech channel in Early Warning System,a new method is proposed for adaptively adjusting transmission parameters in sensor networks based on channel sensing and monitoring.The method solves the problems of the sensing data loss and delay caused by connecting lines frequently dropped in low SNR(Signal to Noise Ratio).Firstly,we adopt a blind SNR estimation algorithm to sensing the current channel quality during the packets transmission period and obtain the observed values by integrating the estimation results with weighted sliding-window.Then,we establish a discrete adjusting transmission parameter model based on Kalman Filtering principle,which can adaptively adjust the transmission rate and power according to the changes in the channel quality while maintaining the link.Finally,experiments results show,in condition of wild field emplaced sensor network's time-varying channel,this method can guarantee the information transmission' s instantaneity and reliability.
出处 《信号处理》 CSCD 北大核心 2011年第9期1370-1374,共5页 Journal of Signal Processing
基金 国防预研基金资助课题(51326030204) 国家重点实验室基金项目(9140C8004011007)资助课题 深圳市科技计划项目(CXB200903090020A)
关键词 传感器网络 预警系统 信道感知 信噪比估计 信道监测 Sensor Networks Early Warning Systems Channel Sensing Signal to Noise Ratio Estimation Channel Monitoring
  • 相关文献

参考文献12

  • 1郭尊华,谢维信,黄敬雄.传感器网络有线接入信息传输性能分析[J].深圳大学学报(理工版),2010,27(1):1-5. 被引量:3
  • 2刘宗香,谢维信,黄敬雄,杨烜.被动传感器网基于修正Riccati方程的系统优化设计[J].信号处理,2008,24(5):733-736. 被引量:2
  • 3Balachandran K, Kadaba S R, Nanda S. Channel quality estimation and rate adaptation for cellular mobile radio [ J ]. Selected Areas in Communications, IEEE Journal on. 1999, 17(7): 1244-1256.
  • 4Pauluzzi D R, Beaulieu N C. A comparison of SNR estima- tion techniques for the AWGN channel [ J ]. Communica- tions, IEEE Transactions on. 2000, 48(10) : 1681-1691.
  • 5范海波,陈军,曹志刚.AWGN信道中非恒包络信号SNR估计算法[J].电子学报,2002,30(9):1369-1371. 被引量:53
  • 6Jacobsmeyer J M. Adaptive trellis-coded modulation for band limited meteor burst channels [ J ]. Selected Areas in Com- munications, IEEE Journal on. 1992, 10(3) : 550-561.
  • 7Kamerman A, Monteban L. WaveLAN (R) -Ⅱ: a high-per- formance wireless LAN for the unlicensed band [ J ]. Bell Labs technical journal. 1997, 2(3) : 118-133.
  • 8Lacage M, Manshaei M H, Turletti T. IEEE 802. 11 rate adaptation: a practical approach [ Z ]. Association for Computing Machinery, Inc, One Astor Plaza, 1515 Broad- way, New York, NY, 10036-5701, USA, 2004.
  • 9Yee M S, Hanzo L. A wide-band radial basis function de- cision feedback equalizer-assisted burst-by-burst adaptive modem [ J ]. Communications, IEEE Transactions on.2002, 50(5): 693-697.
  • 10Camp J, Knightly E. Modulation rate adaptation in urban and vehicular environments: cross-layer implementation and experimental evaluation[J]. Networking, IEEE/ACM Transactions on. 2010, 18(6) : 1949-1962.

二级参考文献26

  • 1阙渭焰,彭应宁.数据融合与雷达优化布站[J].系统工程与电子技术,1996,18(12):26-32. 被引量:6
  • 2阙渭焰,彭应宁,侯秀英.雷达布站方法[J].清华大学学报(自然科学版),1997,37(4):45-48. 被引量:22
  • 3Boers Y, Driessen H, and Nederland T. Results on the modified Riccati equation: target tracking application. IEEE Transactions on AES,42( 1 ) 2006:379-384.
  • 4Farina A, Ristic B, and Timmoneri L. Cramer-Rao bound for nonlinear filtering with Pd < 1 and its application to target tracking. IEEE Transactions on Signal Processing, 50 (8) ,2002:1916-1924.
  • 5Hernandez M, Ristic B, and Timmoneri L. A comparison of two Cramer-Rao bounds for nonlinear filtering with Pd < 1. IEEE Transactions on Signal Processing, 52 ( 9 ), 2004 : 2361-2370.
  • 6Sinopoli B ,Schenato L,Fransceschetti M ,et al. Kalman filtering with intermittent observations. IEEE Transactions on AC ,49 ( 9 ) 2004 : 1453-1464.
  • 7Zwaga J H, Boers Y, and Driessen J N. On tracking performance constrained MFR parameter control. In proceeding of FUSION 2003 Conference, cairns, Australia,2003.
  • 8ITU-T Q.706建议.7号信令系统-消息传递部分信令性能[S].1993.
  • 9ITU-T Q.766建议.综合业务数字网应用中的性能目标[S].1993.
  • 10Andres Arjona,Anti Yla-Jaaski.VoIP呼叫信令性能及其在HSDPA、WCDMA和WiFi中的在线电池消耗[DB/OL].[2007-10-08]http://ieeexplore.ieee.org/iel5/4339774/4339775/04340511.pdf.2007.

共引文献62

同被引文献29

  • 1刘宗香,谢维信,黄敬雄.模糊观测数据的关联和目标跟踪[J].信号处理,2005,21(4):335-337. 被引量:4
  • 2李捷,刘瑞新,刘先省,韩志杰.一种基于混合模型的实时网络流量预测算法[J].计算机研究与发展,2006,43(5):806-812. 被引量:18
  • 3Chouhan N, Vyavahare P D, Jain R. Wireless Sensor Network-A Survey[ J]. International Journal, 2013.
  • 4Saini K, Kumar P, Sharma J. A Survey on Data Aggrega- tion Techniques for Wireless Sensor Networks [ J ]. Inter- national Journal of Advanced Research in Computer Engi- neering & Technology ( IJARCET), 2013,2 (3) :901-903.
  • 5Ghazal S, Othman J B, Claude J. Traffic management based on token bucket mechanism for WiMAX networks [J]. Cluster Computing, 2012,15(4) :391-400.
  • 6Tang P P, Tai T. Network traffic characterization using token bucket model: INFOCOM'99. Eighteenth Annual Joint Conference of the IEEE Computer and Communica- tions Societies. Proceedings. IEEE, 1999[C]. IEEE.
  • 7Abendroth D, Killat U. Intelligent shaping: well shaped throughout the entire network: INFOCOM 2002. Twenty- First Annum Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 2002[C].
  • 8Chen B, Sen-Chueh P, Ku-Chen W. Traffic modeling, prediction, and congestion control for high-speed net- works : a fuzzy AR approach [ J ]. Fuzzy Systems, IEEE Transactions on, 2000,8 (5) :491-508.
  • 9Safavi A A, Shames I, Najmaei N, et al. A new adaptive and intelligent traffic shaper for high speed networks [ J ]. International Journal of Information Science and Manage- ment ( IJISM), 2012,5 (2) :67- 82.
  • 10Yang J, Shi H, Duan A, et al. Kalman traffic prediction algorithm for WSN [ J ]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/ Journal of Huazhong University of Science and Technology( Nature Science Edition), 2011, 39(2).

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部