期刊文献+

基于压缩感知的空间目标三维雷达成像方法 被引量:6

Three-dimensional imaging technique of space objects based on compressive sensing
下载PDF
导出
摘要 对于稳定飞行的空间目标,俯仰向上的多圈次回波数据是稀疏分布的,从有限的观测数据中反演目标的三维反射率函数是不适定问题,观测噪声也会影响反演的结果,因此传统的FFT算法不再适用,必须引入适当的先验信息才能生成目标的三维图像。文章针对空间目标轨道的运动特性,首先推导了回波俯仰向表达式,然后结合目标散射中心稀疏分布特性和压缩感知原理,提出了一种基于多圈次稀疏观测的空间目标三维成像算法。该方法利用噪声单元估计噪声门限,当观测模型满足约束等距性质时,利用加权迭代的压缩感知算法进行成像处理,生成目标的三维图像。最后结合实测轨道模型,仿真验证了在低信噪比下,基于噪声估计的压缩感知算法能实现对目标三维像的精确重构。 For a space object at stable flight state,its multipass echoes data is sparsely distributed along the elevation.Reconstruction three-dimensional target reflectivity function from these limited observations is ill-posed.Moreover,noise will also degrade the reconstruction,so the ordinary Fourier transform is no longer applied,and the object can' t generate the three-dimensional unless the prior information can be acquired in advance.Aiming at the target orbit motion characteristics,the elevation expression is firstly derived in this paper,and then a three-dimensional imaging technique of space targets using multipass echoes is proposed combined with sparse distribution of target scattering centers and compressed sensing theory.The method employs noisy cells to estimate noise level and when measured model meets the restricted isometry property,the weighted compressed sensing iterative algorithm is used to produce the three-dimensional radar image of space object.Finally,combining with the real-time orbit model,the simulation results demonstrate that the compressed sensing based on noise estimation can achieve accurate three-dimensional image reconstruction in the low SNR.
出处 《信号处理》 CSCD 北大核心 2011年第9期1406-1411,共6页 Journal of Signal Processing
基金 国家自然科学基金项目资助(No.61002021)
关键词 逆合成孔径雷达(ISAR) 多圈次 压缩感知 稀疏矩阵 信号重构 Inverse Synthetic Aperture Radar(ISAR) multipass compressed sensing sparse matrix signal reconstruction
  • 相关文献

参考文献9

  • 1Ma Chang-zheng, Tat Soon Yeo, Zhang Qun. Three-Di- mensional ISAR Imaging Based on Antenna Array [ J ]. IEEE Transactions on geoscience and remote sensing, 2008,46 (2) :504-514.
  • 2Gianfranco Fornaro, Francesco Serafino and Francesco Soldovieri. Three Dimensional Focusing with Multipass SAR Data [ J ]. IEEE Transactions on geoscience and re- mote sensing, 2003,41 ( 3 ) :507-517.
  • 3Zhang, Q., Zeng, Y. S., and He, Y. Q. Avian Detection and Identification with high-resolution Radar [ C ]. IEEE Radar Conference. Rome, May, 2008:2194-2199.
  • 4E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. , 2007,35(6) : 2313-2351.
  • 5E. Cande~s and M. B. Wakin. An introduction to com- pressive sampling [ J ]. IEEE Signal Process. Mag., 2008,25(2) : 21-30.
  • 6R. Gribonval and M. Nielsen. Highly sparse representations from dictionaries are unique and independent of the sparse- hess measure. Aalborg University, Tech. Rep. , 2003.
  • 7S. S. Chen, D. L. Donoho and M. A. Saunders. Atomic decomposition by basis pursuit [ J ]. SIAM Rev., 2001, 43 : 129-159.
  • 8全英汇,张磊,刘亚波,张龙,保铮.利用压缩感知的短孔径高分辨ISAR成像方法[J].西安电子科技大学学报,2010,37(6):1022-1026. 被引量:9
  • 9张龙,张磊,邢孟道.一种基于改进压缩感知的低信噪比ISAR高分辨成像方法[J].电子与信息学报,2010,32(9):2263-2267. 被引量:18

二级参考文献18

  • 1王勇,姜义成.基于自适应Chirplet分解的舰船目标ISAR成像[J].电子与信息学报,2006,28(6):982-984. 被引量:14
  • 2王琦,李亚超,邢孟道,保铮.多视角ISAR成像研究[J].西安电子科技大学学报,2007,34(2):165-169. 被引量:11
  • 3Matthew H,Thomas S.Compressed Sensing Radar[C]//IEEE Radar Conference.Rome:IEEE,2008:1-6.
  • 4Varshney K R,(C)etin M,Fisher J W,et al.Sparse Representation in Structured Dictionaries with Application to Synthetic Aperture Radar[J].IEEE Trans on Signal Processing,2008,56(8):3548-3561.
  • 5Grant M,Boyd S,Ye Y.cvx:Matlab Software for Disciplined Convex Programming[CP/OL].[2009-06-15].http://www.stanford.edu/~boyd/cvx/.
  • 6Mayhan J T,Burrows M L,Cuomo K M,et al.High Resolution 3D "Snapshot" ISAR Imaging and Feature Extraction[J].IEEE Trans on Aerosp Electron,2001,37(2):630-641.
  • 7Li Jian,Zheng Dunming.Angle and Waveform Estimation Via RELAX[J].IEEE Trans on AES,1997,33(3):1077-1086.
  • 8Martorella M,Acito N,Berizzi F.Statistical CLEAN Technique for ISAR Imaging[J].IEEE Trans on GRS,2007,45(11):3552-3560.
  • 9Lazarov A D.Iterative Minimum Mean Square Error Method and Recurrent Kalman Procedure for ISAR Image Reconstruction[J].IEEE Trans on Aerosp Electron Syst,2001,37(4):1432-1441.
  • 10Lieu Z S,Wu R,Li J.Complex ISAR Imaging of Maneuvering Targets Via the Capon Estimator[J].IEEE Trans on Signal Processing,1999,47(5):1262-1271.

共引文献23

同被引文献53

  • 1叶春茂,许稼,彭应宁,王秀坛.多视观测下雷达转台目标成像的关键参数估计[J].中国科学:信息科学,2010,40(11):1496-1507. 被引量:4
  • 2D. Donoho, Compressed sensing [ J]. IEEE Transactions on Information Theory,2006,52(4) :1289-1306.
  • 3E. Candes, J. Romberg, T. Tao, Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Infor- mation Theory ,2006,52 ( 2 ) :489-509.
  • 4J. Romberg, Imaging via compressive sampling [ J ]. IEEE signal processing magazine 2008,3.
  • 5W. Bajwa, J. Haupt, A Sayeed and R Nowak. Joint source channel communication for distributed estimation in sensor networks [ J]. IEEE Transactions on signal pro- cessing,2007,53 (10) :3629-3653.
  • 6D. Donoho and Y. Tsaig. Extensions of compressed sens- ing [ J ]. Signal Processing,2006.7,86 ( 3 ) :533-548.
  • 7E Cand~s. Compressive sampling [ J]. Int. Congress of Mathematic, Madrid, Spain,2006,3 : 1433-1452.
  • 8W. Bajwa, J. Haupt, G. Raz, S. Wright, and R. Nowak. Toeplitz-structured compressed sensing matrices [ J ]. IEEE Workshop on Statistical Signal Processing (SSP), Madison, Wisconsin, 2007.8,294-298.
  • 9R. DeVore. Deterministic constructions of compressed sensing matrices [ J ]. Journal of Complexity,2007,23 (4- 6) :918-925.
  • 10Ruizhen Zhao, Hao Li, Zhou Qin, Shaohai Hu, A new construction method for generalized Hadamard matrix in compressive sensing [ C ]. 2011 Cross-Strait Conference on Information Science and Technology, Taiwan, Dan- shui, Dec ,8-9,2011,309-313.

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部