摘要
利用初等方法及代数数论方法讨论了不定方程x2+4=y7的整数解问题,并证明了不定方程x2+4=y7无整数解。
Using the elementary method and algebraic number theory,the integer solution of the Diophantine equation x^2+4=y^7 is discussed in this paper,and the Diophantine equation x^2+4=y^7 which has no integer solution is proved.
出处
《延安大学学报(自然科学版)》
2011年第3期7-8,共2页
Journal of Yan'an University:Natural Science Edition
关键词
不定方程
整数解
整环
代数数论
diophantine equation
integer solution
integer ring
algebraic number theory