摘要
图的第二大特征根与图的直径有着密切的联系,而图的直径对于网络研究有着非常重要的作用,因而研究图的第二大特征根有着很重要的实用价值。确定第二大特征根不超过1的图是图谱中著名的未解决问题,近年来人们得出了一系列关于第二大特征根不超过1的特殊简单图的结论。任意两个圈至多有一个公共顶点的简单连通图称为Cactus。运用找出禁用子图的方法给出了第二大特征根不超过1的所有Cactus。
The second largest eigenvalue of a graph is closely related to its diameter,and the diameter is very important for a network.Therefore,it is of great practical value to study the second largest eigenvalue of graphs.Determining all the graphs whose second largest eigenvalue does not exceed one is a well-known unsolved problem in spectra of graphs.In recent years,researchers determined serious special simple graphs whose second largest eigenvalue does not exceed one.The connected simple graph G is a cactus if any two of its cycles have at most one common vertex.The cactuses whose second largest eigenvalue dose not exceed one have been determined by forbidding subgraph.
出处
《盐城工学院学报(自然科学版)》
CAS
2011年第3期19-22,共4页
Journal of Yancheng Institute of Technology:Natural Science Edition
基金
江苏省自然科学基金资助项目(BK2010292)