期刊文献+

第二大特征根不超过1的Cactus

On Cactuses Whose Second Largest Eigenvalue Does Not Exceed 1
下载PDF
导出
摘要 图的第二大特征根与图的直径有着密切的联系,而图的直径对于网络研究有着非常重要的作用,因而研究图的第二大特征根有着很重要的实用价值。确定第二大特征根不超过1的图是图谱中著名的未解决问题,近年来人们得出了一系列关于第二大特征根不超过1的特殊简单图的结论。任意两个圈至多有一个公共顶点的简单连通图称为Cactus。运用找出禁用子图的方法给出了第二大特征根不超过1的所有Cactus。 The second largest eigenvalue of a graph is closely related to its diameter,and the diameter is very important for a network.Therefore,it is of great practical value to study the second largest eigenvalue of graphs.Determining all the graphs whose second largest eigenvalue does not exceed one is a well-known unsolved problem in spectra of graphs.In recent years,researchers determined serious special simple graphs whose second largest eigenvalue does not exceed one.The connected simple graph G is a cactus if any two of its cycles have at most one common vertex.The cactuses whose second largest eigenvalue dose not exceed one have been determined by forbidding subgraph.
作者 张荣
出处 《盐城工学院学报(自然科学版)》 CAS 2011年第3期19-22,共4页 Journal of Yancheng Institute of Technology:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK2010292)
关键词 CACTUS 第二大特征值 导出子图 cactus eigenvalue induced subgraph
  • 相关文献

参考文献12

  • 1Cvetkovic D. On graphs whose second largest eigenvalue dose not exceed 1 [ J ]. Publ. Inst. Marh. (beogred) , ( N. S. ) 1982,31 (45) :5 -20.
  • 2Hong Y. Sharp lower bounds on the eigenvalue of trees [ J ]. Linear Algebra Appl, 1989,113:101 - 105.
  • 3Shu J.L. On trees whose second largest eigenvalue dose not exceed 1[J]. OR Trans,1998,2(3) :6 -9.
  • 4Xu G.H. On unieyclie graphs whose second largest eigenvalue dose not exceed 1 [J]. Discrete Appl Math, 2004,136:117 - 124.
  • 5Guo S.G. On bicyclic graphs whose second largest eigenvalue dose not exceed 1 [J]. Linear Mgebra Appl, 2005,407:201 -210.
  • 6徐光辉,邵嘉裕.第二大根小于1的简单图[J].系统科学与数学,2006,26(1):121-128. 被引量:3
  • 7Stanic Z. On regular graphs and coronas whose second largest eigenvalue does not exceed 1 [J]. Linear And Multilinear Algebra, 2010,58 (5) :545 - 554.
  • 8Stanic Z. On nested split graphs whose second largest eigenvalue is less than 1 [J]. Linear Mgebra Appl,2009:2 200 - 2211.
  • 9Li S. C , Yang H X. On tricyclic graphs whose second largest eigenvalue dose not exceed 1 [ J ] . Linear Algebra Appl.
  • 10Radosavljevic Z, Rasajski M. A class of reexive cactuses with four cycles [ J ]. Publ. Elektrotehn. Fak, Ser. Mat, 2003, 14:64 - 85.

二级参考文献13

  • 1Cao D, Hong Y. Graphs characterized by the second eigenvalue. J. Graph Theory, 1993, 17(3):325-331.
  • 2Chung F R K, Gyárfás A, Tuza Z, Trotter W T. The maximum number of edges in 2K2-free graphs of bounded degree. Discrete Math., 1990, 81: 129-135.
  • 3Cvetkovic D. On graphs whose second largest eigenvalue does not exceed 1. Publ. Inst. Math.(Beograd), 1982, 31(45): 15-20.
  • 4Cvetkovic D, Doob M, Gutman I and Torgasev A. Recent Results in the Theory of Graph Spectra.North-Holland-Amsterdam, 1988.
  • 5Cvetkovic D, Doob M and Sachs H. Spectra of Graphs-theory and application. Academic Press,New York, 1980.
  • 6Cvetkovic D, Petrid M. A table of connected graphs on six vertices. Discrete Math., 1984, 50:37-49.
  • 7Cvetkovic D, Simic S. On graphs whose second largest eigenvalue does not exceed √5-1/2 Discrete Math., 1995, 138: 213-227.
  • 8Hong Y, Sharp lower bounds on the eigenvalues of trees. Linear Algebra Appl., 1989, 113: 101-105.
  • 9Li J, Zhou H. Maximum induced matchings in graphs. Discrete Math, 1997, 170: 277-281.
  • 10Neumaier A. The second largest eigenvalue of a tree. Linear Algebra and Appl., 1982, 46: 9-25.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部