期刊文献+

一类对称函数的Schur—几何凸性及Schur—调和凸性 被引量:3

Schur Convexity and Schur Multiplicatively Convexity and Schur Harmonic Convexity for a Class of Symmetric Functions
下载PDF
导出
摘要 Schur—凸函数在分析不等式、广义平均值、统计实验、图和矩阵、组合优化、可靠性、信息安全、随机排序和其它相关领域均有重要作用,故研究n元对称函数的Schur—凸性具有重要意义.在本文中,讨论了一类对称函数的Schur—凸性、Schur—几何凸性及Schur—调和凸性. The Schur-convex functions have important applications in analytic inequalities,generalized means,statistics experiment,chart and matrix,combinatorial optimization,reliability,information security,random sorting,etc.So it is important that Schur convexity for symmetric functions of several variables is researched.In this paper,we disscus Schur convexity and Schur multiplicatively convexity and Schur harmonic convexity for a class of symmetric functions.
出处 《内蒙古民族大学学报(自然科学版)》 2011年第4期387-390,共4页 Journal of Inner Mongolia Minzu University:Natural Sciences
关键词 Schur—凸性 Schur—几何凸性 Schur—调和凸性 Schur convexity Schur multiplicatively convexity Schur harmonic convexity
  • 相关文献

参考文献7

  • 1Ionel Roventa.Schur convexity of a class of symmetric functions[J].Annals of the University of Craiova,Mathematics and Computer Science Series,2010,37(1):12-18.
  • 2K-Z Guan.Some properties of a class of symmetric functions[J].Journal of Mathematical Analysis and Applications, 2007,336 ( 1 ):70-80.
  • 3Y Chu, X Zhang, G Wang.The Schur geometrical convexity of the extended mean values[J].Journal of Convex Analysis, 2008,15(4):707-718.
  • 4G D Anderson, M K Vamanamurthy, M Vuorinen.Generalized convexity and inequalities[J].Journal of Mathematical Analysis and Applications, 2007,335 (2): 1294-1308.
  • 5A W Marshall,I Olkin.lnequalities: Theory of Majorization and Its Applications, Academic Press [M].New York: NY, USA,1979.
  • 6张涛,白瑞芳,宝音特古斯.一类Hamy型对称函数的Schur凸性质[J].内蒙古民族大学学报(自然科学版),2010,25(2):133-135. 被引量:2
  • 7Wei-Feng Xia,Yu-Ming Chu.Schur-convexity for a class of symmetric functions and Its Applications[J]. Journal of Inequalities and Applications,2009, Article ID 493759: 15.

二级参考文献7

  • 1张天宇,荷花,冀爱萍.关于调和凸函数的一些性质[J].内蒙古民族大学学报(自然科学版),2006,21(4):361-363. 被引量:7
  • 2J C Kuang.Applied Inequalities (3nd ed.)[ M ].Jinan:Shandong Science and Technology Press, 2004.
  • 3T Hare, M Ughiya, S Takahasi.A refinement of various mean inequalities [J], J Inequal Appl, 1998, (2) : 387-395.
  • 4Wei-Dong Jiang.Some properties of dual form of the Hamy' s symmetric functions [J], Journal of Mathematical Inequalities, 2007,1 ( 1 ) : 117-125.
  • 5Wei-Feng Xia,Yu-Ming Chu. Schur-Convexity for A Class of Symmetric Functions and Its Applications [J]. Journal of Inequalities and Applications , Vo 2009, Article ID 493759, 15 pages.
  • 6Yu-Ming Chu,Yu-Pei Lv, The Schur Harmonic Convexity of the Symmetric Functions and Its Applications [J]. Journal of Inequalities and Applications , 2009, Article ID 838529:10 pages.
  • 7A W Marshall, I Olkin, Inequalities: Theory of Majorization and Its Applications [ M].New York :Academic Press, 1979.

共引文献1

同被引文献20

  • 1张小明.几何凸函数的几个定理及其应用[J].首都师范大学学报(自然科学版),2004,25(2):11-13. 被引量:21
  • 2CHU YuMing 1, XIA WeiFeng 1 & ZHAO TieHong 2 1 Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China,2 Institut de Mathmatiques, Universit Pierre et Marie Curie, Paris F-75252, France.Schur convexity for a class of symmetric functions[J].Science China Mathematics,2010,53(2):465-474. 被引量:6
  • 3Marshall A W, Olkin I, Arnold B C. Inequalities: theory of majorization and its application (Second Edition) [M]. New York: Springer, 2011.
  • 4Chu y-M, Wang G-D, Zhang X-H. Schur muftiplicative and harmonic convexities of the complete symmetric function[J]. Mathematische Nachrichten, 2011, 284(5-6):53-663.
  • 5Chu Y-M, Lv Y-P. The Schur harmonic convexity of the Hamy symmetric function and its appli- cations [J]. Journal of Inequalities and Applications, Volume 2009, Article ID 838529, 10 pages, doi: 10.1155/2009/838529.
  • 6Culjak V, Pecaric J. Schur-convexity of Cebisev functional[J]. Mathematical Inequalities & Appli- cations, 2011, 14(4): 911 916.
  • 7Roventa I. Schur convexity of a class of symmetric functions [J]. Annals of the University of Craiova, Mathematics and Computer Science Series. 2010, 37(1): 12-18.
  • 8Witkowski A. On Schur-convexity and Schur-geometric convexity of four-parameter family of means [J]. Mathematical Inequalities & Applications, 2011, 14(4): 897-903.
  • 9Culjak V, Franjic I, Ghulam R, Pecaric J. Schur-Convexity of Averages of Convex Functions[J]. Jour- nal of Inequalities and Applications, Volume 2011, Article ID 581918, 25 pages, doi: 10.1155/2011/581918.
  • 10Shi H-N, Zhang J. Schur-convexity of dual form of some symmetrc functions[J].Journal of inequalities and Applications, Volume 2013,Article ID 295, 9pages, doi:10.1186/1029-242X-2013-295.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部