期刊文献+

融合诊断中信息容错性的证据重构方法 被引量:2

Evidence reconstruction for information fault-tolerance in fusion diagnosis
下载PDF
导出
摘要 在基于证据理论的故障融合诊断过程中,错误的待融合信息会引起故障的漏诊.针对此类容错性问题,提出了一种证据重构方法,在已有的故障诊断识别框架的基础上,利用多传感器信号的方差计算信号的相对可靠程度,构造新的信度函数,对待融合证据进行了重新分配,以减少出错信息对融合结果的影响,同时对该方法中可调参数的选取原则进行了理论分析.融合诊断实验在隔振器硬件实验平台上进行,诊断对象为振动发散故障,针对的信息容错性问题为基础加速度信号断路情况.对比性实验及结果分析表明,采用该方法能够在单路信号传输出错的情况下及时诊断振动发散故障,增加了融合诊断系统的容错性. In the fusion fault diagnosis based on evidence theory,the abnormal information may cause missed diagnosis of faults.To solve the fault-tolerance problem,we propose an evidence reconstruction method.On the basis of the existing frame of fault diagnosis discernment,the variances of multisensor signals are employed to calculate the signal relative reliability,from which new basic probability assignment functions are formed accordingly.The fused evidences are redis-tributed and the effect of abnormal information is reduced.Principles for selecting the adjustable parameter in this method are theoretically analyzed.Experiments have been carried out on a hardware experimental platform for vibration isolator.The vibration divergence fault is diagnosed by the fusion diagnosis system.Disconnection of the major acceleration signal is considered as the fault-tolerance problem.Finally,result analysis of the comparative experiment shows that the vibration divergence fault can be diagnosed in time in the occurrence of one-channel abnormal signal.The fault-tolerance of the fusion diagnosis system is improved.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第9期1049-1055,共7页 Control Theory & Applications
基金 中国科学技术大学研究生教育创新计划资助项目
关键词 故障诊断 证据理论 容错性 证据重构 fault diagnosis evidence theory fault-tolerance evidence reconstruction
  • 相关文献

参考文献14

  • 1FAN X F, ZUO M J. Fault diagnosis of machines based on D-S evi- dence theory, part 2: application of the improved D-S evidence the- ory in gearbox fault diagnosis[J]. Pattern Recognition Letters, 2006, 27(5): 377 - 385.
  • 2YANG B S, KIM K J. Application of Dempstex-Shafer theory in fault diagnosis of induction motors using vibration and current signals[J]. Mechanical Systema and Signal Processing, 2006, 20(2): 403 - 420.
  • 3YU L J, CLEARY D, OSBOR,N M.et al. Information fusiom strategy for aircraft engine health managenment[C]//Proceedings of the ASME Turbo Expo: Power for Land,. Sea and Air. Montreal: ASME 2007: 531 - 538.
  • 4BASIR O, YIJAN X H. Engine: fault diagaous based on multi-sensor information fusion using Dempster-ghafer evidence theocy[J]. Information Fusion. 2007, 8(4): 379- 386.
  • 5LI H; BAO Y Q, OU J E Strucad damage identificatont based on integration of informalion fusiou and shamon entrop[J].Mechanical Systems and Signat Pracessing, 2008, 22(6): 1427- 1440.
  • 6CLOUQUEUR T, SALUJA K K.RAMANATHAN P. Fauit tolerance in collaborative sensor networks for tanger detection[J].IEEE Transon Computers,2004,53(3): 320- 333.
  • 7SUN S L, DENG Z L. Multi-sensor optional information fasion Kalman filter[J].Automatica, 2004, 40(6): 1017- 1023.
  • 8曹政才,付宜利,王树国,靳保,马全武.机器人敏感皮肤多传感器数据融合[J].哈尔滨工业大学学报,2005,37(8):1019-1021. 被引量:1
  • 9陈建勇,王树宗.模糊超球神经网络辅助组合导航融合算法[J].航天控制,2006,24(2):17-21. 被引量:4
  • 10李学军,李萍,褚福磊.基于相关函数的多振动信号数据融合方法[J].振动.测试与诊断,2009,29(2):179-183. 被引量:20

二级参考文献23

共引文献28

同被引文献11

  • 1王福元,徐家文,吴祥.基于多信息融合的电解加工智能故障诊断系统[J].制造技术与机床,2005(5):37-40. 被引量:2
  • 2Mostafaei, H. R. , Khalaj, M.,Khalaj, F. , et al. Enginefault diagnosis decision-making with incomplete informationusing Dempster-Shafer theory [J]. Journal of Basic and Ap-plied Scientific Research, 2012,2(1): 105 - 113.
  • 3Dromigny, A.,Zhu, Y. M. Improving the dynamic range ofreal-time X-ray imaging systems via Bayesian fusion [ J ].Journal of Nondestructive Evaluation, 1997( 16) ; 147 —160.
  • 4Basir, 0.,Yuan, X. H. Engine fault diagnosis based onmulti-sensor information fusion using Dempster-Shafer evi-dence theory [ J ]. Information Fusion, 2007 ( 8 ):379 -386.
  • 5Al-Ani, A. , Deriche, M. A new technique for combiningmultiple classifiers using the Dempster-Shafer theory of evi-dence [J ]. Journal of Artificial Intelligence Research,2002, 17; 333 -361.
  • 6Hoffman, J, C.,Murphy, R. R. Comparison of Bayesianand Dempster-Shafer theory for sensing : a practitioner’s ap-proach [C ]. SPIE Proc. on Neural and Stochastic Methodsin Image and Signal Processing, 1993, 2032 : 266 -279.
  • 7Yang, B. S.,Kim, K. J. Application of Dempster-Shafertheory in fault diagnosis of induction motors using vibrationand current signals [ J ]. Mechanical Systems and Signal Pro-cessing ,2006,20 : 403 - 420.
  • 8张文胜,龚涛,胡锴.基于D-S证据理论的直流电机故障诊断研究[J].中国舰船研究,2010,5(4):72-74. 被引量:3
  • 9蒋玲莉,刘义伦,李学军,陈安华.基于SVM与多振动信息融合的齿轮故障诊断[J].中南大学学报(自然科学版),2010,41(6):2184-2188. 被引量:29
  • 10綦黎明,王宝庆.一种基于证据理论的多源信息融合管道泄漏诊断[J].机床与液压,2012,40(23):181-184. 被引量:2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部