期刊文献+

网络社区发现的粒子群优化算法 被引量:7

Particle-swarm-optimization algorithm to discover network community
下载PDF
导出
摘要 从优化模块度的角度出发,提出了一种基于粒子群优化的网络社区发现的粒子群优化算法(CDPSO);该算法根据网络连接数据的特点给出一种新的粒子编码方法,有效地避免非法粒子的产生,一定程度上缓解了基于二值编码的迭代二划分策略所遭遇的局部最优划分问题,并改进了传统离散粒子群优化(PSO)的粒子位置调整策略,使算法收敛速度更快.实验结果表明,CDPSO能够在无先验信息的条件下快速有效地揭示网络内在的社区结构. For optimizing the modularity,a community discovery algorithm(CDPSO) is proposed based on particle-swarm-optimization(PSO).By the characteristics of network link data,a novel particle-encoding scheme is presented to avoid the production of illegal particles,alleviate the local optimal-partition encountered in the iterative partition approach based on Boolean encoding scheme,and improve the particle-position adjustment strategy in traditional discrete PSO to achieve better convergence.Experimental results show that CDPSO can rapidly and effectively discover the intrinsic community structure in networks without any domain information.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第9期1135-1140,共6页 Control Theory & Applications
基金 国家自然科学基金与中国民用航空总局联合资助项目(60776816) 广东省自然科学基金重点资助项目(8251064101000005) 广东省科技攻关资助项目(2007B06040107) 福建省教育厅科研基金资助项目(JA10076) 国家自然科学基金资助项目(61171141)
关键词 粒子群优化 社区结构 模块度 particle swarm optimization community structure modularity
  • 相关文献

参考文献8

  • 1黄发良.信息网络的社区发现及其应用研究[J].复杂系统与复杂性科学,2010,7(1):64-74. 被引量:19
  • 2KENNEDY J, EBERTHART R. Particle swarm optimization[C] //Proceeding of IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995:1942 - 1948.
  • 3KENNEDY J, EBERHART RC, SHI Y. Swarm Intelligence[M]. San Francisco, CA: Morgan Kaufmann, 2001.
  • 4HRUSCHKA E, CAMPELLO R J G B, FREITAS A A, et al. A sur- vey of evolutionary algorithms for clustering[J]. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 2009, 39(2): 133 - 155.
  • 5段晓东,王存睿,刘向东,林延平.基于粒子群算法的Web社区发现[J].计算机科学,2008,35(3):18-21. 被引量:18
  • 6NEWMAN M E J, G1RVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 6113 - 6127.
  • 7GIRVAN M, NEWMAN M E J. Community structure'in social and biological networks[J]. Proceedings of the National Academy of Sci- ences, 2001, 99(12): 7821 - 7826.
  • 8PIZZUTI C. GA-NET: a genetic algorithm for community detection in social networks[C]//Proceedings of the lOth international Confer- ence on Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer-Verlag, 2008:1081 - 1090.

二级参考文献73

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2Luce R D,Perry A D. A method of matrix analysis of group structure[J]. Psychometrika,1949,14(2) : 95 -116.
  • 3Alba R D. A graph-theoretic definition of a sociometric clique[ J]. J Math Sociol, 1973,3 (1) : 113 -126.
  • 4Luce R D. Connectivity and generalized cliques in sociometric group structure[J]. Psychometrika, 1950, 15 (2) :169 -190.
  • 5Mokken R J. Cliques, clubs and clans[J]. Quality and Quantity, 1979,13(2) : 161 - 173.
  • 6Seidman S B, Foster B L. A graph-theoretic generalization of the clique concept[ J]. J Math Sociol. 1978, 6:139 -154.
  • 7Seidman S B. Network structure and minimum degree[ J]. Soc Netw, 1983,5:269 -287.
  • 8Luccio F, Sami M. On the decomposition of networks into minimally interconnected networks[ J]. IEEE Trans Circuit Theory, 1969, 2(16) : 184 -188.
  • 9Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks[J]. PNAS, 2004, 101 (9): 2658 - 2663.
  • 10Hu Y Q, Chen H B, Zhang P, et al. Comparative definition of community and corresponding identifying algorithm[J]. Phys Rev E, 2008, 78(2) :026121.

共引文献33

同被引文献153

  • 1郭庆来,孙宏斌,张伯明,吴文传.基于无功源控制空间聚类分析的无功电压分区[J].电力系统自动化,2005,29(10):36-40. 被引量:124
  • 2倪向萍,阮前途,梅生伟,何光宇.基于复杂网络理论的无功分区算法及其在上海电网中的应用[J].电网技术,2007,31(9):6-12. 被引量:49
  • 3NEWMAN M E J. Fast algorithm for detecting community structure in networks[ J]. Physical Review E, 2004, 69(6) : 66 - 76.
  • 4HARRIS M, OWENS J, SENGUPTA S, et al. CUDPP: CUDA data parallel primitives library[ EB/OL]. [ 2010- 10- 10]. http://www. gpgpu, org/developer/cudapp/.
  • 5HE B, LU M, YANG K, et al. Relational query co-processing on graphics processors[ J]. ACM Transactions on Database System, 2009, 34(4) : 1 -39.
  • 6AILA T, LAINE S. Understanding the efficiency of ray traversal on GPUs[C]// HPG '09: Proceedings of the Conference on High Performance Graphics. New York: ACM Press, 2009:145 - 149.
  • 7TZENG S, PATNEY A, OWENS J D. Task management for irreg- ular-paralle workloads on the GPU[ C]//HPG '10: Proceedings of the Conference on High Performance. Piscataway, NJ: IEEE Press, 2010:29-37.
  • 8PHARR M, FERNANDO R. GPU Gems 2 [ M]. Boston: Addison Wesley, 2005:493 - 495.
  • 9SILBERSTEIN M, SCHU A. GEIGER D, et al. Efficient compu- tatlon of sum-products on GPUs through software-managed cache [ C]//Proceedings of the 22nd Annum International Conference on Supercomputing. New York: ACM Press, 2008:173 - 179.
  • 10Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442.

引证文献7

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部