摘要
The mechanism of the cycloaddition reaction between singlet germylene silylene (H2Ge =Si:) and acetone has been investigated with CCSD(T)/6-31G*//MP2/6-31 G* method. From the potential energy profile, we could predict that the reaction has two competitive dominant reaction channels. The present rule of this reaction is that the [2 +2] cycloaddition reaction of the two π-bonds in germylene silylene and acetone generates a four-membered ring silylene with Ge. Because of the unsaturated property of Si atom in the four-membered ring silylene with Ge, it could further react with acetone, resulting in the generation of a bis-heterocyclic compound with Si and Ge. Simul- taneously, the ring strain of the four-membered ring silylene with Ge makes it isomerize to a twisted four-membered ring product.
The mechanism of the cycloaddition reaction between singlet germylene silylene (H2Ge =Si:) and acetone has been investigated with CCSD(T)/6-31G*//MP2/6-31 G* method. From the potential energy profile, we could predict that the reaction has two competitive dominant reaction channels. The present rule of this reaction is that the [2 +2] cycloaddition reaction of the two π-bonds in germylene silylene and acetone generates a four-membered ring silylene with Ge. Because of the unsaturated property of Si atom in the four-membered ring silylene with Ge, it could further react with acetone, resulting in the generation of a bis-heterocyclic compound with Si and Ge. Simul- taneously, the ring strain of the four-membered ring silylene with Ge makes it isomerize to a twisted four-membered ring product.