期刊文献+

面向多维对象的RC-反k近邻查询新方法

A new method of RkNN querry on multidimensional objects
下载PDF
导出
摘要 分析现有反k近邻(reverse k nearest neighbor,RkNN)查询在效率、数据维度等方面的不足,提出基于R树结点覆盖值(R-tree’s cover-value)的RC-反k近邻查询方法.该方法需预先计算R树每个结点的覆盖值,采用过滤-精炼两步式处理方法,在过滤阶段采用两种剪枝启发式.该方法可有效处理数据库更新,适用于任意k值、任意维的对象集,查询结果精确,且计算量较小.实验结果表明,在k>6时RC-反k近邻查询时间比同类工作更短. Reverse k-nearest neighbor(RkNN) queries have been popular in recent decades,although previous researches have some limitations,i.e.,the low query efficiency and inability in multidimensional case.The proposed RkNN method based on R-tree's cover-value,namely RC-RkNN,pre-calculated the cover-values of every node in the R-tree.This method was composed of filter stage and refinement stage.Two novel pruning heuristics were developed in the filter stage.Database can be updated efficiently with RC-RkNN,and querying results can be retrieved accurately.The value of k in RC-RkNN can be choosen arbitrarily and RC-RkNN is applicable to the multidimensional case.The simulation results on several real-world datasets and artificial datasets demonstrate that RC-RkNN need less querying time in comparison with other methods when k is larger than 6.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2011年第5期410-416,共7页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(60773099 60973088)~~
关键词 数据库系统 查询处理 信息检索 空间数据库 R树 反k近邻查询 过滤-精炼两步式处理 database systems query processing information retrieval spatial database R-trees reverse k nearest neighbor queries filter and refinement steps
  • 相关文献

参考文献1

二级参考文献101

  • 1Papadopoulos A.N., Manolopoulos Y.. Performance of nearest neighbor queries in R-trees. In: Proceedings of ICDT, Delphi, Greece, 1997, 394~408.
  • 2An N., Yang Zhen-Yu, Sivasubramaniam A.. Selectivity estimation for spatial joins. In: Proceedings of ICDE, Heidelberg, Germany, 2001, 368~375.
  • 3Sun Chengyu, Agrawal D., Abbadi A.E.. Selectivity estimation for spatial joins with geometric selections. In: Proceedings of EDBT, Prague, Czech Republic, 2002, 609~626.
  • 4Kamel I., Faloutsos C.. Parallel R-trees. In: Proceedings of SIGMOD, San Diego, California, 1992, 195~204.
  • 5Papadopoulos A., Manolopoulos Y.. Similarity query processing using disk arrays. In: Proceedings of SIGMOD, Seattle, Washington, USA, 1998, 225~236.
  • 6Koudas N., Faloutsos C., Kamel I.. Declustering spatial databases on a multi-computer architecture. In: Proceedings of EDBT, Avignon, France, 1996, 592~614.
  • 7Brinkhoff T., Kriegel Hans-Peter, Seeger B.. Parallel processing of spatial joins using R-trees. In: Proceedings of ICDE, New Orleans, Louisiana, 1996, 258~265.
  • 8Papadopoulos A., Manolopoulos Y.. Parallel processing of nearest neighbor queries in declustered spatial data. In: Proceedings of ACM-GIS, Rockville, MD, 1996, 35~43.
  • 9Papadopoulos A., Manolopoulos Y.. Nearest neighbor queries in shared-nothing environments. Geoinformatica, 1997, 1(4): 369~392.
  • 10Fu X., Wang D., Zheng W.. GPR-tree: A global parallel index structure for multiattribute declustering on cluster of work- stations. In: Proceedings of APDC'97, Shanghai, China, 1997, 300~306.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部