期刊文献+

功能梯度材料圆柱壳基于变分渐近法的高保真简化模型

High-fidelity Simplified Model for Functionally Graded Cylindrical Shells Based on Variational Asymptotic Method
下载PDF
导出
摘要 为有效分析涂覆型功能梯度圆柱壳顶面作用正弦荷载下的响应,基于变分渐近方法(VAM)建立高保真简化模型。根据Hamilton扩展原则建立功能梯度材料圆柱壳3维能量方程;利用壳体固有小参数将3维能量渐近扩展为系列2维近似能量方程,并将近似能量转换为工程常用的Reissner-Mindlin模型形式;提供重构关系以准确预测沿厚度方向的3维场分布。通过SiC-Al功能梯度面层-均质基层圆柱壳顶面作用正弦分布荷载的柱形弯曲算例验证,基于该理论和模型重构的位移和应力分量与3维精确解相一致;在应变很小时,可考虑任意大位移和全局旋转,并可准确捕捉翘曲几何非线性。 In order to effectively analyze the response of coating functionally graded cylindrical shell under sinusoidal pressure on the top surface,a high-fidelity simplified model was developed based on variational asymptotic method(VAM).The 3D energy equation of functionally graded shell was established based on the expanded Hamilton principle.The 3D energy equation was asymptotic expanded into a series of 2D approximate energy equation by using the inherent small parameters,and the approximate energy was converted to a form of Reissner-Mindlin model.The recovery relationships were provided to accurately predict the 3D field distribution along the thickness direction.The cylindrical bending example of a homogeneous substrate with a thin Sic-Al functionally graded coating under sinusoidal pressure on the top surface showed that the recovered 3D displacement and stress components agree well with 3D precise solutions.The present model is valid for large displacements and global rotations and can accurately capture the warping geometric nonlinearity when the strains are small.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2011年第5期95-101,共7页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(51078371) 中央高校基本科研业务费资助项目(CDJZR10200017)
关键词 复合材料 变分技术 渐近分析 应力分析 功能梯度材料 composite materials vatiational techniques asymptotic analysis stresses analysis functionally graded materials
  • 相关文献

参考文献11

  • 1Shaw L L. Thermal residual stresses in plates and coatings composed of multi-layered and functionally graded materials [ J ]. Composites : Part B, 1998,29 ( 12 ) : 199 - 210.
  • 2Altay G, Dokmeci M C. Variational principles and vibrations of a functionally graded plate [ J ]. Computers and Structures, 2005,83 ( 3 ) : 1340 - 1354.
  • 3Liew K M, He X Q, Ng T Y. Active control of FGM plates subjected to a temperature gradient: Modeling via finite element method based on FSDT [ J ]. International Journal for Numerical Methods in Engineering, 2001,52 ( 3 ) : 1253 - 1271.
  • 4Ma L S, Wang T J. Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory[ J]. International Journal of Solids and Structures ,2004,41 (7) :85 -101.
  • 5Bian Z G, Chen W Q, Lim C W. Analytical solutions for single-and multi-span functionally graded plates in cylindrical bending[ J ]. International Journal of Solids and Structures, 2095,42 (4) : 6433 - 6456.
  • 6Das M, Barut A, Madenci E, et al. A triangular plate element for thermo-elastic analysis of sandwich panels with a func- tionally graded core [ J ]. International Journal for Numerical Methods in Engineering, 2006,68 (5) :940 - 966.
  • 7Pinhas B Y. New variational-asymptotic formulations for interlaminar stress analysis in laminated plates [ J ]. Journal of Applied Mathematics and Physics, 1986,37 (8) : 305 - 321.
  • 8Lee C Y. Dynamic variational asymptotic procedure for laminated composite shells--Part I: Low-frequency vibration analysis [ J ]. Journal of Applied Mechanics,2009,76 ( 9 ) : 110 - 122.
  • 9钟轶峰,YUWenbin.用变分渐近法进行复合材料层合板仿真及三维场重构[J].复合材料学报,2010,27(4):174-179. 被引量:8
  • 10Gilhooley D F, Batra R C, Xiao J R, et al. Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions [ J ]. Composite Structures,2007,80 (9) : 539 - 552.

二级参考文献13

  • 1Noor A K, Burton S W. Assessment of computational models for multilayered composite shells [J]. Applied Mechanics Review, 1990, 43(10): 47-54.
  • 2Noor A K, Burton W S. Assessment of shear deformation theories for multilayered composite plates [ J]. Applied Mechanics Review, 1989, 41(5): 1-13.
  • 3NoorAK, Malik M. An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels [J]. Computational Mechanics, 2000, 25 (7) : 43-58.
  • 4Reddy J N. A simple higher- order theory for laminated composite plates [J]. Journal of Applied Mechanics, 1984, 51(11) : 745- 752.
  • 5Touratier M. An efficient standard plate theory [J]. International Journal of Engineering Science, 1991, 29(4): 901-916.
  • 6DiSciuva M. Development of anisotropic multilayered shear deformable rectangular plate element [J]. Computers and Structures, 1985, 21(15): 789-796.
  • 7Cho Y B, Averill R C. First- order zig- zag sublaminate plate theory and finite element model for laminated composite and sandwich panels[J]. Composite Structures, 2000, 50(8): 1-15.
  • 8Apalak Z G, Apalak M K, Genc M S. Progressive damage modeling of an adhesively bonded unidirectional composite singlelap joint in tension at the mesoscale level[J]. Journal of Thermoplastic Composite Materials, 2006, 19(6) : 671-702.
  • 9Danielson D A. Finite rotation with small strain in beams and plates [C]//Proceedings of the 2nd Pan American Congress of Applied Mechanics. Valparaiso, Chile: The American Academy of Mechanies(AAM) 1991: 156-164.
  • 10Danielson D A, Hodges D H, Nonlinear beam kinematics by decomposition of the rotation tensor [J]. Journal of Applied Mechanics, 1987, 54(2), 258-262.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部