期刊文献+

气井水力旋转射流清砂技术及其应用 被引量:3

A hydraulic swirling jet for sand-washing in borehole cleaning of gas wells
下载PDF
导出
摘要 在不同阶段、不同井况的井筒清洁施工作业中,虽然现有的常规水力冲砂、机械捞砂、化学解堵3大类井筒清洁技术取得了较好的应用效果,但由于各项工艺技术和工具自身的局限性,不能完全满足目前低压气井清砂作业的需要。为此,研制了带整体式旋转喷头和具有滤水、防挂卡功能的大直径沉砂筒的水力旋转射流清砂工具,形成了低压气井水力旋转射流清砂工艺技术。现场应用结果表明:在井下建立了局部循环,漏失量小,对产层回压小;作业管柱不受限制;沉砂筒长度可根据需要任意组合,一次捞获量大;能彻底清洁井筒和近井地带产层裂缝,从根本上解决了井下沉积物的堵塞问题。 For the borehole cleaning at different stages and under different well conditions,although good effects can be achieved by the existing regular techniques such as conventional hydraulic sand washing,mechanical sand bailing,and chemical deplugging,all the above techniques as well as the corresponding tools show limitations,which can not satisfy the requirement of sand removal especially for low-pressure gas wells.Aiming at this problem,a hydraulic swirling jet for sand-washing is developed for the borehole cleaning of low-pressure gas wells,and its hydraulic work tools are particularly designed including an integral swirl jet nozzle and large-diameter sediment tubes with the functions of drainability and anti-sticking.Field applications show that(1) the local circulation is constructed in downhole,both leakage and backpressure are small,(2) there is no limitations on the working string,(3) lengths of the sediment tubes can be assembled and combined according to different requirements with the maximum bailed volume at each of its running time,and(4) the wellbore and fractures around and near the pay zone can be cleaned once for all,which completely prevents the downhole clogging.
出处 《天然气工业》 EI CAS CSCD 北大核心 2011年第10期61-63,120-121,共3页 Natural Gas Industry
关键词 低压气井 井筒 清洁 水力旋转射流技术 现场 应用 low-pressure gas well,wellbore,clean,hydraulic swirling jet,field application
  • 相关文献

参考文献4

二级参考文献25

  • 1张友军,杨家军,胡强法,陈智.水力深穿透井下射孔深度检测方法探讨[J].石油机械,2005,33(1):37-39. 被引量:22
  • 2李根生,熊伟,宋剑,黄中伟,牛继磊.高压水射流深穿透射孔产能影响因素[J].石油钻采工艺,2006,28(4):60-63. 被引量:13
  • 3阴妍,鲍久圣,段雄.磨料水射流切割工艺参数的实验研究[J].机械设计与制造,2007(4):107-109. 被引量:20
  • 4Tazibt A, Parsy F, Abriak N. Theoretical analysis of the particle acceleration process in abrasive water jet cutting[J]. Computational Materials Science, 1996,5:243 - 254.
  • 5Chen F. L, Siores E. The effect of cutting jet variation on striation formation in abrnsive water jet cutting[J]. International journal of Machine Tool & Manufacture, 2001,41:1479 - 1486.
  • 6Fowler G, Shipway P. H, Pashby I. R. Abrasive waterjet controlled depth milling of Ti6Al4V alloy-an inves- tigation of the role of jet-workpiece traverse speed and abrasive grit size on characteristics of the milled material [ J ]. Journal of Materials Processing Technology, 2005,161:407 - 414.
  • 7Hans-Jurgen Odenthal, Herbert Pfeifer, Ina Lemanowoicz, Rainer Gorissen. Simulation of the submerged energy nozzle-mold water model system using laser-optical and computational fluid dynamics methods [ J ]. Metallurgical and Materials Transactions B,2002,33( 2 ): 145 - 156.
  • 8Durbin S. G, Yoda M, Abdel-Khalik S. I, Initial Conditions and Near-Field Dynamics in Turbulent .Liquid Sheets [ J ]. Flow, Turbulence and Combustion ,2007,79 (3) :198 -205.
  • 9Brian P, Whelan, Anthony, J. Robinson. Nozzle geometry effects in liquid jet array impingement[J]. Applied Thermal Engineering,2009,79:2211 - 2221.
  • 10Ramulu M. An Experimental and Numerical Study of Abrasive Waterjet Generated Stress Fields [ C ]. In : Proceedings of the 9th American Waterjet conference, 1997,173 - 188.

共引文献36

同被引文献48

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部