摘要
文章针对网络化控制系统普遍存在的时延问题,介绍了一种基于径向基函数神经网络自整定PID的控制策略。在Matlab/Simulink环境下搭建了基于TrueTime工具箱的网络控制系统的仿真平台。仿真结果表明:与常规PID控制相比,神经网络自整定PID控制算法可有效地提高系统的鲁棒性和自适应性,且此方法易于实现,便于工程应用。
Aiming at the universal problem of time delay in network control system(NCS), a control strategy based on radial basis function(RBF) neural network self-tuning PID is provided. A simula- tion model of NCS is established under the environment of TrueTime toolbox based Matlab/Simulink. The simulation results indicate that compared with the traditional PID control, the RBF neural net- work self-tuning PID control can effectively improve the robustness and self-adaptability of the system, and can be applied to real projects easily.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第10期1489-1491,1550,共4页
Journal of Hefei University of Technology:Natural Science
关键词
RBF神经网络
网络化控制系统
网络诱导时延
radial basis function(RBF) neural network
network control system(NCS)
network-induced delay