摘要
文章对回归模型Y=r(X)+ε进行了研究。设{(Xi,Yi),1≤i≤n}为取值于E×R上的一组同分布样本,其中E是由半度量d(.,.)生成的某个抽象的半度量空间,R是一个实数空间。在α-混合相依情形下,利用Bernstein大块小块过程,建立函数型数据的改良核回归估计的渐近正态性。
In this paper, the regression model Y=r(X)+ε is investigated. { (Xi ,Yi), 1≤i≤n} is set as the random vectors assumed to be identically distributed values taken in EXR, where E is a certain abstract semi-metric space endowed with a semi-metric d( · , ·) and R is a real space. The asymptotic normality of a modified kernel regression estimator for α-mixing functional data is established by employing Bernstein's big-block and small-block procedure.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第10期1584-1587,共4页
Journal of Hefei University of Technology:Natural Science
关键词
函数型数据
改良的核回归估计
Α-混合
渐近正态性
functional data
modified kernel regression estimator
α-mixing
asymptotic normality