期刊文献+

改进相似性度量方法的协同过滤推荐算法 被引量:12

COLLABORATIVE FILTERING RECOMMENDATION ALGORITHM ON IMPROVED SIMILARITY MEASURE METHOD
下载PDF
导出
摘要 协同过滤推荐技术是电子商务推荐系统中应用最成功的个性化推荐技术。但随着电子商务规模的扩大,用户数目和商品数目呈指数级的增长,传统的推荐技术其性能越来越差。因此提出一种新的相似性度量方法,自动生成权重因子,以动态组合项目属性相似度和评分相似度,形成合理的项目相似度,产生项目最近邻居,实现用户评分推荐。实验结果表明,所提的算法在一定程度上提高了推荐的稳定性和精确度,同时解决冷启动问题。 Collaborative filtering recommendation technology is the most successful personalised recommendation technology ever applied to e-commerce recommendation systems.As the scale of e-commerce expands,the magnitudes of users and commodities grow rapidly,which persistently worsens the performance of traditional recommendation technology.Therefore a new similarity measure method is put forward to automatically generate weighting factors,dynamically combine attribute similarity and score similarity,create a reasonable item similarity to find out the nearest neighbouring item,and finally realise user rating recommendation.Experimental results prove the algorithm improves recommendation steadiness and precision to a certain extent and solves the cold start problem.
出处 《计算机应用与软件》 CSCD 2011年第10期7-8,42,共3页 Computer Applications and Software
基金 国家自然科学基金资助(70971020)
关键词 相似度 冷启动 协同过滤 推荐 最近邻居 Similarity Cold start Collaborative filter Recommendation Nearest neighbour
  • 相关文献

参考文献8

  • 1Kim E,Kim W ,Lee Y. Purchase propensity prediction of EC Customer by combining multiple classifier based on GA [ C ]//International Conference on Electronic Commerce 2000,2000:274 - 280.
  • 2Breese J, Hecherman D, Kadie C. Empirical analysis of predictive a]gorlthms for collaborative filtering[ C ]//Proceedings of the 14th Confer- ence on Uncertainty in Artificial Intelligence ( UAI' 98). 1998:43 - 52.
  • 3彭玉,程小平.基于属性相似性的Item-based协同过滤算法[J].计算机工程与应用,2007,43(14):144-147. 被引量:21
  • 4庄永龙.基于项目特征模型的协同过滤推荐算法[J].计算机应用与软件,2009,26(5):244-246. 被引量:7
  • 5Aggarwal C C. On the effects of dimensionality reduction on high dimensional similarity search [ C ]//Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART. Symposium on Principles of Database Systems. 2001:256 - 266.
  • 6王明文,陶红亮,熊小勇.双向聚类迭代的协同过滤推荐算法[J].中文信息学报,2008,22(4):61-65. 被引量:16
  • 7Li DY, Du Y. Artificial Intelligence with Uncertainty. Chapman & Hall/ CRC Taylor & Francis Group. 2008.
  • 8Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms [ C ]//Proceedings of the 10th International World Wide Web Conference. 2001:285-295.

二级参考文献15

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2Breese J,Hecherman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the 14th Conference on Uneertainty in Artifical Itelligence(UAI-98),1998:43-52.
  • 3Akira Sato,Takahisa Ando,Hiroya Inakoshi,et al.Personalization System based on Dynamic Learning.
  • 4Sarwar B M,Karypis G,Konstan J,et al.Analysis of recommender algorithms for e-commerce[C]//Proceedings of the 2nd ACM ECommerce Conference.New York:ACM Press,2000:158-167.
  • 5Starwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms[C]//Proc of the 10th Int'l World Wide Web Conf.New York:ACM Press,2001:285-295.
  • 6Breese J. S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [C]//Proceedings of the 14^th Conference on Uncertainty in Artificial Intelligence. 1998. 43-52.
  • 7Sarwar B,'Karypis G, Konstan J, Riedl J. Item based collaborative filtering recommendation algorithms [C]//Proceedings of the Tenth International World Wide Web Conference, 2001, 285-295.
  • 8Gui-Rong Xue, Chenxi Lin, Qiang Yang. Scalable Collaborative Filtering Using Cluster-based Smoothing [C]//Proeeeding of the 28th Annual International ACM SIGIR Conference, in Salvador, Brazil, 2005.
  • 9Sarwar B, Karypis G, Konstan J, Riedl J. Application of dimensionality reduction in recommender systems: A case study [C]//ACM WebKDD Web Mining for E- Commerce Workshop, 2000.
  • 10Ungar L. H, Foster D. P. Clustering Methods for Collaborative Filtering [C]//Workshop on Recommender Systems at the 15th National Conference on On Artificial Intelligence. 1998.

共引文献37

同被引文献81

  • 1颜龙杰.基于近邻评分预测的协同过滤推荐算法[J].软件,2013,34(8):63-66. 被引量:14
  • 2彭玉,程小平.基于属性相似性的Item-based协同过滤算法[J].计算机工程与应用,2007,43(14):144-147. 被引量:21
  • 3MARSHALL M. Aggregate knowledge raises $5M from Kleiner, on a roll [EB/OL]. (2006-11-10)[2013-05-20]. http://venturebeat, com/ 2006/12/10/aggregate- knowledge-raises-5 m- from-kleiner-on-a-roll.
  • 4BOBADILLA J, ORTEGA F, HERNANDO A. A collaborative filte- ring similarity measure based on singularities [ J]. Information Pro- cessing and Management, 2011, 48(2) : 204 -217.
  • 5NADSCHLAGER S, KOSORUS H, BOGL A, et al. Content-based recommendations within a QA system using the hierarchical structure of a domain-specific taxonomy [ C]/! Proceedings of the 23rd Inter- national Workshop on Database and Expert Systems Applications. Washington, DC: IEEE Computer Society, 2012:88-92.
  • 6JIA C X, LIU R R, SUN D, et al. A new weighting method in net- work-based recommendation [ J]. "Physica A--Statistical Mechanics and Its Applications, 2008, 387(23): 5887 -5891.
  • 7CHO Y S, MOON S, RYU K H. Mining association rules using RFM scoring method for personalized u-commerce recommendation system in emerging data [ C] // Proceedings of the 2012 Internation- al Conference on Computer Applications for Modeling, Simulation, and Automobile. Berlin: Springer, 2012:190-198.
  • 8赵超超.基于用户和基于项目结合的个性化推荐算法[J].内蒙古农业大学学报(社会科学版),2007,9(6):139-140. 被引量:3
  • 9Breese J,Hecherman D,Kadie C.Empirical analysis ofpredictive algorithms for collaborative filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI’98),1998:43-52.
  • 10Sarwar B,Karypis G,Konstan J,et al.Item—Based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International World Wide Web Conference,2001:285-295.

引证文献12

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部