期刊文献+

基于陷阱检测的咬尾卷积码译码算法 被引量:5

Trap Detection Based Decoding Algorithm for Tail-biting Convolutional Codes
下载PDF
导出
摘要 该文分析了循环维特比算法(CVA)中存在的循环陷阱问题,并证明了传统基于CVA的咬尾卷积码译码算法中存在的不足,提出了一种高效率的咬尾卷积码译码算法。该算法通过检测两次不同迭代中获得的两条最大似然路径是否相同来判断是否有循环陷阱产生,并及时终止循环,减少冗余迭代;在没有循环陷阱产生的情况下,新算法比较当前迭代中最大似然路径和已经发现的最优咬尾路径是否相同来自适应终止迭代。文中对循环陷阱检测方案和自适应终止方案做了进一步优化,即利用路径的净增量而非路径本身作为检测量。实验结果表明新算法提高了译码效率,降低了译码复杂度。 There exists circular trap in Circular Viterbi Algorithm (CVA) and deficiencies in CVA-based decoding algorithms of Tail-Biting Convolutional Codes (TBCC). A high efficient decoding algorithm is proposed for TBCC. The checking rule for circular trap in the new algorithm is that comparing whether the two maximum likelihood paths obtained from two different iterations are identical to each other, if they are identical, the CVA should be terminated. Meanwhile, when there no trap happens, a new adaptive stopping rule for CVA is proposed which is based on comparing the maximum likelihood path with the best maximum likelihood tail-biting path. Furthermore, the path used as the measurements in the checking rule and in the stopping rule is replaced by its net path metric to reduce the complexity of decoder. The results of experiments show that the new algorithm improves the decoding efficiency and reduces the decoder complexity.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第10期2300-2305,共6页 Journal of Electronics & Information Technology
基金 国家863计划项目(2009AA011501) 上海市国际合作项目(10220712100) 上海市重点项目(10511500404) 上海市启明星人才计划(10QA1406300)资助课题
关键词 咬尾卷积码 循环维特比算法 循环陷阱 最大似然路径 Tail-Biting Convolutional Codes (TBCC) Circular Viterbi Algorithm (CVA) Circular trap Maximum likelihood path
  • 相关文献

参考文献11

  • 1Cox V C and Sundberg C W. An efficient adaptive circular Viterbi algorithm for decoding generalized tailbiting convolutional codes [J]. IEEE Transactions on Vehicular Technology, 1994, 43(1): 57-68.
  • 2Wang Q and Bhargava V K. An efficient maximum-likelihood decoding algorithm for generalized tailbiting convolutional codes including quasi-cyclic codes [J]. IEEE Transactions on Communications, 1989, 37(8): 875-879.
  • 3Ma H H and Wolf J K. On tail biting convolutional codes [J]. IEEE Transactions on Communications, 1986, 34(2): 104-111.
  • 43GPP TS. 45.003-3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Channel Coding (Release 9) [S]. 2009.
  • 5IEEE 802.16-2009. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems [S]. 2009.
  • 63GPP TS. 36.212-3rd Generation Partnership Project Technical Specification Group Radio Access Network Evolved Universal Terrestrial Radio Access (E-UTRA) Multiplexing and Channel Coding (Release 8) [S]. 2009.
  • 7Stahl P, Anderson J B, and Johannesson R. Optimal and near-optimal eneoders for short and moderate-length tailbiting trellises [J]. IEEE Transactions on Information Theory, 1999, 45(7): 2562-2571.
  • 8Pai H T, Han S Y, Wu T, et al.. Low-complexity ML decoding for convolutional tail-biting codes [J]. IEEE Communications Letters, 2008, 12(12): 883-885.
  • 9Shankar P, Kumar P N A, Sasidharan K, et al. Efficient convergent maximum likelihood decoding on tail-biting. http://arxiv.org/abs/cs.IT/0601023. 2011.4.
  • 10Shao R Y, Lin S, and Fossorier M P C. Two decoding algorithms for tailbiting codes [J]. IEEE Transactions on Communications, 2003, 51(10): 1658-1665.

同被引文献33

  • 1白洁.安全服务,需要拓展新的空间——汤放鸣研究员谈信息安全服务的内涵及拓展方向[J].信息安全与通信保密,2006,28(12):21-22. 被引量:1
  • 23GPP. TS. 45.003-3rd~2009, Generation PartnershipProject; Technical Specification Group GSM/EDGERadio Access Network;Channel Coding (Release 9) [S].Sophia Antipolis Valbonne: 3GPP,2013:156-158.
  • 33GPP TS. 36.212-3rd-2009, Generation PartnershipProject; Technical Specification Group RadioAccess Network; Evolved Universal TerrestrialRadio Access (E-UTRA); Multiplexing and ChannelCoding (Release 8) [S]. Sophia Antipolis Valbonne:3GPP, 2013:11-13.
  • 4IEEE Computer Society and the IEEE Microwave Theoryand Techniques Society. IEEE Std 802. 16.-2012,IEEE Standard for local and metropolitan areanetworks Part 16: Air Interface for BroadbandWireless Access Systems[S]. New York:IEEE, 2013:765-767.
  • 5PA I H, HAN S, WU T, et al. Low-complexity ML Decodingfor Convolutional Tail-biting Codes[J]. IEEECommunications Letters, 2008, 12(12):883-885.
  • 6WANG X, QIAN H,XU J, et al.An Efficient CVA-basedDecoding Algorithm for Tail-biting Codes[C]//Proc.of Global Telecommunications Conference. Houston,USA: IEEE, 2011:1-5.
  • 7SHA0 R, LIN S, F0SS0RIER M. Two Decoding Algorithmsfor Tailbiting Codes[J]. IEEE Transactions onCommunications, 2003,51(10):1658-1665.
  • 8STAHL P, ANDERSON J, JOHANNESSON R. Optimal and Near-optimal Encoders for Short and Moderate-1engthTailbiting Trellises[J]. IEEE Transactions onInformation Theory, 1999, 45(07):2562-2571.
  • 9CALDERBANK A, FORNEY G, VARDY A. Minimal Tail-bitingTrellises: the Golay Code and More[J]. IEEETransactions on Information Theory, 1999, 45(05):1435-1455.
  • 10BOCHAROVA I, JOHANNESSON R,KUDRYASHOV B,et al.BEAST Decoding for Block Codes[J]. EuropeanTransactions on Telecommunications, 2004(15):297-305.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部