摘要
基于冗余字典的信号稀疏表示是一种新的信号表示理论,当前的理论研究主要集中在字典构造算法和稀疏分解算法两方面。该文提出一种新的基于自适应冗余字典的语音信号稀疏表示算法,该算法针对自相关函数为指数衰减的平稳信号,从K-L展开出发,建立了匹配信号结构的冗余字典,进而提出一种高效的基于非线性逼近的信号稀疏表示算法。实验结果表明冗余字典中原子的自适应性和代数结构使短时平稳语音信号稀疏表示具有较高的稀疏度和较好的重构精度,并使稀疏表示算法较好地应用于语音压缩感知理论。
The sparse representation based on overcomplete dictionary is a new signal representation theory. Recent activities in this field concentrate mainly on the study of dictionary design algorithm and sparse decomposition algorithm. In this paper, a novel speech signal sparse representation algorithm is proposed based on adaptive overcomplete dictionary. Considering stationary signal with autocorrelation function of exponential decay, an adaptive overcomplete dictionary is constructed in terms of the Karhunen-Loève (K-L) expansion. Furthermore, an effective algorithm based on the nonlinear approximation is proposed to obtain sparse decomposition of signal with the adaptive dictionary. The experimental results indicate that short-term stationary speech signal sparse representation based on the adaptability and algebraic structure of atom in the overcomplete dictionary has higher sparsity and better reconstructive precision. The sparse representation algorithm can preferably be used in compressed sensing.
出处
《电子与信息学报》
EI
CSCD
北大核心
2011年第10期2372-2377,共6页
Journal of Electronics & Information Technology
基金
国家自然科学基金(60971129)
国家973计划项目(2011CB302903)
江苏省自然科学基金(BK2011238)
中国博士后科学基金(20100481167)
江苏省博士后科学基金(1101022B)资助课题
关键词
语音信号处理
压缩感知
稀疏表示
K-L展开
冗余字典
Speech signal processing
Compressed Sensing (CS)
Sparse representation
Karhunen-Loeve (K-L) expansion
Overcomplete dictionary