期刊文献+

基于自适应冗余字典的语音信号稀疏表示算法 被引量:20

A Speech Signal Sparse Representation Algorithm Based on Adaptive Overcomplete Dictionary
下载PDF
导出
摘要 基于冗余字典的信号稀疏表示是一种新的信号表示理论,当前的理论研究主要集中在字典构造算法和稀疏分解算法两方面。该文提出一种新的基于自适应冗余字典的语音信号稀疏表示算法,该算法针对自相关函数为指数衰减的平稳信号,从K-L展开出发,建立了匹配信号结构的冗余字典,进而提出一种高效的基于非线性逼近的信号稀疏表示算法。实验结果表明冗余字典中原子的自适应性和代数结构使短时平稳语音信号稀疏表示具有较高的稀疏度和较好的重构精度,并使稀疏表示算法较好地应用于语音压缩感知理论。 The sparse representation based on overcomplete dictionary is a new signal representation theory. Recent activities in this field concentrate mainly on the study of dictionary design algorithm and sparse decomposition algorithm. In this paper, a novel speech signal sparse representation algorithm is proposed based on adaptive overcomplete dictionary. Considering stationary signal with autocorrelation function of exponential decay, an adaptive overcomplete dictionary is constructed in terms of the Karhunen-Loève (K-L) expansion. Furthermore, an effective algorithm based on the nonlinear approximation is proposed to obtain sparse decomposition of signal with the adaptive dictionary. The experimental results indicate that short-term stationary speech signal sparse representation based on the adaptability and algebraic structure of atom in the overcomplete dictionary has higher sparsity and better reconstructive precision. The sparse representation algorithm can preferably be used in compressed sensing.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第10期2372-2377,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60971129) 国家973计划项目(2011CB302903) 江苏省自然科学基金(BK2011238) 中国博士后科学基金(20100481167) 江苏省博士后科学基金(1101022B)资助课题
关键词 语音信号处理 压缩感知 稀疏表示 K-L展开 冗余字典 Speech signal processing Compressed Sensing (CS) Sparse representation Karhunen-Loeve (K-L) expansion Overcomplete dictionary
  • 相关文献

参考文献17

  • 1Mallat S and Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 2Bergeau F and Mallat S. Matching pursuit of images. In: Proceedings of IEEE-SP, USA, 1994: 330-333.
  • 3成萍,赵家群,司锡才,赵昕.基于稀疏表示的被动毫米波L-R成像算法[J].电子与信息学报,2010,32(7):1707-1711. 被引量:7
  • 4Wright J and Yang A Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 5傅霆,尧德中.稀疏分解的加权迭代方法及其初步应用[J].电子学报,2004,32(4):567-570. 被引量:27
  • 6Mairal J and Bach F. Non-local sparse models for image restoration. IEEE International Conference of Computer Vision. Kyoto, Japan, 2009: 2272-2279.
  • 7Coifman R and Wickerhauser M. Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory, 1992, 38(2): 1713-1716.
  • 8Chen S and Donoho D L. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1999, 20(1): 33-61.
  • 9Daubechies I. Time-frequency localization operators: a geometric phase space approach. IEEE Transactions on Information Theory, 1988, 34(4): 605-612.
  • 10Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

二级参考文献64

  • 1刘扬阳,金伟其,苏秉华.基于正交离散小波的超分辨力图像复原算法[J].北京理工大学学报,2005,25(5):431-434. 被引量:5
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273-1276
  • 4Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse coding for natural images. Nature, 1996, 381(6583): 607-609
  • 5Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by VI? Visual Research, 1997, 37(33): 3311-3325
  • 6Mallat S G, Zhang Z F. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
  • 7Davis G M, Mallat S G, Zhang Z F. Adaptive time-frequency decompositions. SPIE Journal of Optical Engineering, 1994, 33(7): 2183-2191
  • 8Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 1999, 20(1): 33-61
  • 9Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: are-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
  • 10Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-598

共引文献145

同被引文献267

引证文献20

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部