期刊文献+

基于空间角稀疏表示的二维DOA估计 被引量:14

Two Dimensional DOA Estimation Based on Sparse Representation of Space Angle
下载PDF
导出
摘要 论文提出一种基于空间角稀疏表示的2维DOA估计方法,解决了2维DOA估计中冗余字典构造的难题。构建的空间角包含了方位角和俯仰角的信息,利用其构造冗余字典可以将方位角和俯仰角的组合从2维空间映射到1维空间,极大地降低了字典的长度和求解的复杂度;同时将算法推广到频域,扩展了其应用范围。与传统的高分辨算法相比,该方法对信噪比和快拍数要求不高、无需特征值分解和多维搜索过程。理论分析和仿真实验,验证了该方法对2维相干信号和非相干信号都具有较高的估计精度和较好的分辨力,在不同信噪比下性能优于MUSIC算法。 To solve the problem of estimating two dimensional Direction Of Arrival (DOA) using sparse representation, a novel DOA estimation method is proposed to estimate the DOAs of two-dimensional signals based on sparse representation of space angle. So the space angle is put forward to construct the dictionary. By this way, the dimension of dictionary is reduced to one-dimension from two-dimensional space, and the length of the redundant dictionary is largely reduced. Then the algorithm is extended to frequency domain, and the frequency sparse representation of space angle method is presented. Compared with the traditional high-resolution methods, the proposed method has lower SNR threshold and smaller snaps. Theoretical analysis and simulation experiments verify the algorithm has a better performance in the aspect of precision and resolution to estimate the DOAs of two-dimensional coherent signals than the MUSIC algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第10期2402-2406,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60972161)资助课题
关键词 信号处理 波达方向 2 维角 稀疏表示 空间角 Signal processing Direction Of Arrival (DOA) Two dimensional angle Sparse representation Space angle
  • 相关文献

参考文献12

  • 1Forster P, Larzabal P, and Boyer E. Threshold performance analysis of maximum likelihood DOA estimation [J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3183-3191.
  • 2Park Cheol-Sun, Choi Jun-Ho, Yang Jong-Won, et al.. Direction of arrival estimation using weighted subspace fitting with unknown number of signal sources [C]. Proe. 11th International Conference on Advanced Communication Technology, Phoenix Park, Dublin, Feb. 15-18, 2009:2295-2298.
  • 3Jian C, Wang S, and Lin L. Two-dimensional DOA estimation of coherent signals based on 2D unitary ESPRIT method[C]. Proc. 8th International Conference on Signal Processing, Beijing, China, 2006: 16-20.
  • 4Gao Fei-fei, Nallanathan A, and Wang Yi-de. Improved MUSIC under the coexistence of both circular and noncircular sources[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 3033-3038.
  • 5Guo Xian-sheng, Wan Qun, Chang Chun-qi, et al.. Source localization using a sparse representation framework to achieve superresolution [J]. Mulitidimensional Systems and Signal Processing, 2010, 21(4): 391-402.
  • 6Chow K Y, Lui K S, and Lam E Y. Wireless sensor networks scheduling for full angle coverage [J]. Multidimensional Systems and Signal Processing, 2009, 20(2): 101-119.
  • 7Malioutov D, ~etin M, and Willsky Alan S. A sparse signal reconstruction perspective for source localization with sensor arrays [J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022.
  • 8Zhang Shu, Li Yu-mei, and Song Jun-cai. A novel method for DOA estimation based on generalized-prior distribution [C]. 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 2010: 244-247.
  • 9Duarte M F, Wakin M B, and Baraniuk R G. Fast reconstruction of piecewise smooth signals from incoherent projections. Workshop on Signal Processing with Adaptative Sparse Structured Representations(SPARS), Rennes, France, 2005. http://spars05.isisa.fr/ACTES/TSS-3.pdf.
  • 10Donoho D and Huo X. Uncertainty principles and ideal atomic decompositions [J]. IEEE Transactions on Information Theory, 2001, 47(7): 2845-2862.

同被引文献124

  • 1黄家才,石要武,陶建武.多径循环平稳信号二维波达方向估计——极化域平滑法[J].电子与信息学报,2007,29(5):1110-1114. 被引量:7
  • 2刁鸣,缪善林.一种二维ESPRIT算法参数配对新方法[J].系统工程与电子技术,2007,29(8):1226-1229. 被引量:13
  • 3Harry T. Optimum array processing [M]. 13ei]ing: Tsinghua University Press, 2008 : 12-49.
  • 4Tamara G, Brett W. Tutorial on Matlab for tensors and the tucker decomposition [EB/OL]. http: // csmr. ca. sandia, gov/ tgkolda/pubs/index, html SAND20 04-5187. (2011-11).
  • 5Lieven D. Signal processing based on multilinear algebra[D]. Belgium : Katholieke University, 1997.
  • 6Martin H, Florian R, Giovanni D G. Higher-order SVD-based subspace estimation to improve the pa- rameter estimation accuracy in multi-dimensional harmonic retrieval problems [J]. IEEE Trans Signal Process, 2008, 56(7): 3198-3213.
  • 7Martin H. Efficient one-, two- and multidimensional high resolution array processing[D]. Munich, Ger- many: Munich University of Technology, 1996.
  • 8Arpita T, Martin H, Florian R, et al. Tensor-based spatial smoothing using multiple snapshots [J]. IEEE Trans Signal Process, 2010, 58(5): 2715-2727.
  • 9Lieven D, Bart D, Joos V. A multilinear singular value decomposition[J]. SIAM J Matrix Anal Appl, 2000, 21(4): 1253-1278.
  • 10Dimitri N, Nicholas D S. Adaptive algorithms to track the Parafac decomposition of a third-order ten- sor[J]. IEEE Transactions, 2009, 57(6): 2299- 2310.

引证文献14

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部