期刊文献+

诱导密度算子及其性质分析 被引量:8

Induced Density Operator and Its Properties
下载PDF
导出
摘要 对密度算子进行拓展研究,提出了诱导密度算子的概念并对其进行了性质分析。对诱导变量进行了界定,给出了一种以诱导变量为基准的元素聚类方法;在此基础上,基于分组后各组的群组特征,给出了密度加权向量的确定方法;将诱导密度中间算子与已知的信息集结算子合成,得到了诱导密度算子,并对诱导密度算子的性质进行了分析。最后,通过一个算例对诱导密度算子的应用进行了说明。 Based on the traditional density operator,this paper presents an induced density operator,and analyzes its properties.First,we introduce the notion of induced variable and provide one clustering method by induced variables.then,we provide a density weighting vector determining method according to the clustering group feature.Secondly,the induced density operator is defined by combining the induced density middle operator and the known information aggregation operators.Finally,the properties of the induced density operator are analyzed.A numeric case is provided to illustrate the application of the induced density operator.
出处 《系统管理学报》 CSSCI 北大核心 2011年第5期527-532,共6页 Journal of Systems & Management
基金 国家自然科学基金资助项目(71071030 71071031) 中国博士后科学基金资助项目(20080441094) 中国博士后科学基金特别资助项目(200902545) 辽宁省博士启动基金资助项目(20081020)
关键词 诱导密度算子 诱导变量 数据聚类 密度加权向量 induced density operator induced variable data clustering density weighting vector
  • 相关文献

参考文献15

  • 1Yager R R. On ordered weighted averaging aggrega tion operators in multi-criteria decision making [J]. IEEE Trans. On Systems, Man and Cybernetics, 1988, 18(1) :183-190.
  • 2Yager R R, Filev D P. Induced ordered weighted averaging operators[J]. IEEE Trans System Man Cybern, 1999, 29(1) :141-150.
  • 3Liu X W, Chen L H. On the properties of parametric geometric OWA operator[J]. International Journal of Approximate Reasoning, 2004, 35 (2) : 163-178.
  • 4Xu Z S, Da Q L. An overview of operators for aggregating information[J]. International Journal of Intel- ligent Systems, 2003, 18(9):953-969.
  • 5Yager R R. Families of OWA operators[J]. Fuzzy Sets and Systems, 1993, 59(1):125-148.
  • 6Torra V. The weighted OWA operator[J]. International Journal of Intelligent Systems, 1997, 12: 153- 166.
  • 7Yager R R. Applications and extensions of OWA ag gregation[J]. International Journal Man-Mac-hineS tudy, 2002,37(1) :103-132.
  • 8Liu X W. Some properties of the weighted OWA operator[J]. IEEE Trans on Systems, Man, and Cy- bernetics, 2006,36(1): 118-127.
  • 9Wu J, Liang C Y, Huang Y Q. An argument-de- pendent approach to determining OWA operator weights based on the rule of maximum entropy[J]. International Journal of Intelligent Systems, 2007,22(2):209-221.
  • 10Yager R R, Xu Z S. The continuous ordered weigh- ted geometric operator and its application to decision making[J]. Fuzzy Set and Systems, 2006,157: 139- 1402.

二级参考文献64

共引文献71

同被引文献92

引证文献8

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部