期刊文献+

一对称矩阵方程组解的研究

Research on the Solution to a System of Symmetric Matrix Equations
下载PDF
导出
摘要 给出了四元数体上一对称矩阵方程组有斜埃尔米特解的充分必要条件,并得到了此方程组的斜埃尔米特解的一般表达式。应用主要结果讨论了四元数矩阵A和B矩阵有共同的斜埃尔米特广义逆的充要条件及斜埃尔米特广义逆的表示。 In this paper, we consider a system of matrix equations over quaternion algebra. Necessary and sufficient conditions for the existence and the expression of skew Hermitian solution to the system are derived. As an application, results for quaternion matrices and have a common skew Hermitian generalized inverse are obtained.
出处 《齐鲁师范学院学报》 2011年第5期109-111,共3页 Journal of Qilu Normal University
关键词 四元数 矩阵方程组 斜埃尔米特解 广义逆. Quaternion A system of matrix equations Skew Hermitian solution Generalized inverse.
  • 相关文献

参考文献8

  • 1Q.W.Wang,C.Y.Lin.The re-nonnegative definitesolutions to the system of matrix equations[AXA*,BXB*]=[C,D]. J Natur.Sci.Math . 1997
  • 2Xian Zhang.The general common Hermitian nonnegative-definite solution to the matrix equations AXA*=B andCXC*=D. Linear and Multilinear Algebra . 2004
  • 3Q.Xu,L.Sheng,Y.Gu.The solutions to some oper-ator equations. Linear Algebra and Its Applications . 2008
  • 4Q.W.Wang.Bisymmetric and centrosymmetric solu-tions to systems of real quaternionmatrix equations. Comput Math.Appl . 2005
  • 5Q.W.Wang,Jing Jiang.Extreme ranks of (skew-)Hermitian solutions to a quaternion matrix equation. E-lectronic Journal of Linear Algebra . 2010
  • 6Khatri CG,Mitra SK.Hermitian and nonnegative definite solutions of linear matrix equations. SIAM Journal on Applied Mathematics . 1976
  • 7Chang XW,Wang JS.The symmetric solution of the matrix equations AX+ YA = C, AXAT + BYBT = C, and(ATXA, BTXB) = ( C, D). Linear Algebra and Its Applications . 1993
  • 8X. Zhang.The general common Hermitian nonnegative-definite solution to the matrix equations AXA* =BB* and CXC* = DD* with applications in statistics. Journal of Multivariate Analysis . 2005

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部