摘要
设ll,1l,2,…l,s为任意整数,n为正整数,n1,n2,…,ns为任意非负整数.用初等数论方法证明了:如果k满足k=(4l+2)3-∏si=1(4li+1)2ni或k=(4l+3)3-22n∏si=1(4li+1)2ni,则Mordell方程y2=x3+k无整数解.
Let l,l1 ,l2 ,... ,ls be some integer, and n be a positive integer,and n1 ,n2 ,…… ,ns be some nonnegative integer. In this paper, using some elementary number theory methods, we prove that if k satisfies either k=(4l+2)^3-Пi=1^s(4li+1)^2ni或k=(4l+3)^3-2^2nПi=1^s(4li+1)^2nithen the Mordell y^2=x^3+k
equation has no integral solution.
出处
《齐鲁师范学院学报》
2011年第5期117-118,共2页
Journal of Qilu Normal University
关键词
Mordell方程
整数解
同余
整除
Mordell equation
Integral solution
Congruence
Exact dividing