期刊文献+

基于非参估计的局部滑窗双参CFAR目标检测

Target Detection of Local Gliding Window Two Parameter CFAR Based on Non-Parameter Estimation
下载PDF
导出
摘要 针对特定杂波概率模型不能有效的描述SAR图像背景杂波这一问题,提出了一种基于非参估计的局部滑窗双参CFAR目标检测算法。该方法首先用非参估计方法逼近SAR图像局部背景,完成对局部背景的精确建模;在此基础上,理论推导了局部双参CFAR检测算法的阈值,设计了阈值求解的数值算法。对典型目标图像进行实验,结果表明,该方法检测速度较快、精度较高。 For certain probabilistic model cant describe SAR image' s background effectively, a target detecting algorithm of local gliding window two parameter CFARs based on non-parameter estimation is proposed. The method of non-parameter estimation is used to approximate the local background and complete the accurate model of SAR image. The threshold of local two-parameter CFAR is deduced theoretically, and numerical solution of it is also designed. Experiment of typical target images is carried out to show the rapidity and precision of the algorithm.
机构地区 中国人民解放军
出处 《现代防御技术》 北大核心 2011年第5期125-128,132,共5页 Modern Defence Technology
基金 国家863项目(2007AA701206)
关键词 非参估计 双参CFAR SAR目标检测 图像处理 non-parameter estimation two-parameter CFAR SAR target detection image processing
  • 相关文献

参考文献10

  • 1印玉栋,秦振杰,范时胜,刘庆华.Weibull杂波背景下的双参数CFAR检测器[J].空军雷达学院学报,2010,24(4):247-250. 被引量:4
  • 2ROLHLING H. Radar CFAR Thresholding in Clutter and Multiple Target Situations [ J 1. 1EEE Trans. On AES, 1983, 19 : 608 -621.
  • 3张维,于盛林,张弓.基于Anderson-Darling检验的恒虚警检测[J].光电工程,2009,36(2):39-44. 被引量:6
  • 4WEBB A R. Gamma Mixture Models for Target Recognition [ J ]. Pattern Recognition, 2000, 33 ( 12 ) :2045 - 2054.
  • 5COPSEY K,WEBB A R. Bayesian Gamma Mixture Model Approach to Radar Target Recognition [ J]. IEEE Trans. On AES, 2003, 39(4) : 1201-1217.
  • 6JACOBS S P. Automatic Target Recognition Using High- resolution Radar Range Profiles [ D ]. Washington:Washington University, 1999.
  • 7HEIDEN R V, GROEN F C A. The Box-cox Metric for Nearest Neighbor Classification Improvement [ J]. Pattern Recognition, 1997, 30(2) : 273-279.
  • 8STEINBERG B D. Microwave Imaging with Large An- tenna Arrays: Radio Camera Principle and Technique [M]. New York: John Wiley and Sons, 1983: 746- 852.
  • 9DudaRO HartPE DavidG. Stork著 李宏东 姚天翔等译.模式分类[M].北京:机械工业出版社,2003..
  • 10徐牧,代大海,王雪松,肖顺平.SAR对地面车辆目标探测仿真研究[J].系统仿真学报,2007,19(8):1713-1716. 被引量:2

二级参考文献22

  • 1王首勇,刘俊凯,王永良.机载雷达多杂波分布类型的恒虚警检测方法[J].电子学报,2005,33(3):484-487. 被引量:11
  • 2Shnidman D A. Radar detection in clutter [J]. IEEE Transactions on Aerospace and Electronic Systems (S0018-9251), 2005, 41(3): 1056-1067.
  • 3Smith M E, Varshney P K. Intelligent CFAR processor based on data variability [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2000, 36(3): 837-847.
  • 4Stephens M A. EDF Statistics for Goodness of Fit and Some Comparisons [J]. Journal of the American Statistical Association(S0162-1459), 1974, 69(347): 730-737.
  • 5D'Agostino Ralph B, Stephens Michael A. Goodness-of-fit techniques [M]. New York: Dekker, 1986.
  • 6Scholz F W, Stephens M A. K-sample Anderson-Darling tests [J]. Journal of the American Statistical Association (S0162-1459), 1987, 82(399): 918-924.
  • 7Dong Y. Clutter spatial distribution and new approaches of parameter estimation for Weibull, and K-distributions. Research DSTO (DSTO-RR-0274), Australia [R]. 2004.
  • 8Haykin S, Bakker R, Currie B W. Uncovering nonlinear dynamics: the case study of sea clutter [J]. Proceedings of the IEEE(S0018-9219), 2002, 90(5): 860-881.
  • 9Kuruoglu E E, Zerubia J. Modeling SAR images with a generalization of the rayleigh distribution [J]. IEEE Transactions on lmage Processing(S1057-7149), 2004, 13(4): 527-533.
  • 10Anastassopoulos V, Lampropoulos G A. Optimal CFAR detection in Weibull clutter [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 1995, 31(1): 52-64.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部