期刊文献+

有向图的负控制数及其下界

Minus Domination Numbers and Its Lower Bounds in Directed Graphs
下载PDF
导出
摘要 设D=(V,E)为一个有向图,对于函数f:V→{-1,0,1},如果对任意的v∈V,均有f(ND-[v])≥1成立,则称f为图D的一个负控制函数,图D的负控制数γ-(D)=min{w(f)|f是D一个负控制函数}.给出几类有向图的负控制数的值,并得到一般有向图的负控制数的几个下界. Let D=(V,A) be a digraph. For a functionf:V(D)→{-1,0,1} ,if f(N [v])≥1 for each vertex v∈V, then f is called a minus dominating function on D. The minus domination number T-(D) = min{w(f)[ f is a minus domi- nating function on D}. The minus domination numbers were given for a few types of digraphs. And some lower bounds were obtained for minus domination number of general digraphs.
出处 《天津科技大学学报》 CAS 2011年第5期76-78,共3页 Journal of Tianjin University of Science & Technology
关键词 负控制 有向图 下界 minus domination directed graph lower bound
  • 相关文献

参考文献11

  • 1Dunbar J, Hedetniemi S, Henning M A, et al. Minus domination in regular graphs [J]. Discrete Mathematics, 1996, 149 (1/2/3) :311-312.
  • 2Dunbar J,Goddard W,Hedetniemi S, et al. The algo- rithmic complexity of minus domination in graphs [J]. Discrete Applied Mathematics, 1996,68 (1/2) : 73-84.
  • 3Dunbar J, Hedetniemi S, Henning M A, et al. Minus domination in graphs[J]. Discrete Mathematics, 1999, 199 (1/2/3) :35-47.
  • 4Damaschke P. Minus domination in small-degree graphs [J]. Discrete Applied Mathematics, 2001,108 (1/2) : 53-64.
  • 5Kang L Y, Cai M C. Upper minus domination in regular graphs [J]. Discrete Mathematics, 2000,219(1/2/3) : 135-144.
  • 6邢化明,孙良.On Minus Paired-Domination in Graphs[J].Journal of Beijing Institute of Technology,2003,12(2):202-204. 被引量:3
  • 7Xing H M, Liu H L. Minus total domination in graphs [J]. Czechoslovak Mathematical Journal, 2009,59 (4) : 861-870.
  • 8Zelinka B. Signed and minus domination in bipartite graphs[J]. Czechoslovak Mathematical Journal, 2006, 56 (2) : 587-590.
  • 9Zelinka B. Signed domination numbers of directed graphs [J]. Czechoslovak Mathematical Journal, 2005,55 (2) : 479-482.
  • 10Karami H, Sheikholeslami S M, Khodkar A. Lower bounds on the signed domination numbers of directed graphs EJ]. Discrete Mathematics, 2009,309 (8) : 2567- 2570.

二级参考文献3

  • 1Dunbar J E,Hedetniemi S T,Henning M A,et al.Minus domination in graphs[].Computers and Mathematics With Applications.1996
  • 2Dunbar J E,Hedetniemi S T,Henning M A,et al.Minus domination in graphs[].Discrete Mathematics.1999
  • 3Haynes T W,Slater P J.Paired-domination and the paired-domatic number[].Congressus Numerantium.1995

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部