期刊文献+

Pseudoindex为n-1的光滑n维Fano簇 被引量:1

N-Dimensional Smooth Fano Variety with Psedo-index n-1
下载PDF
导出
摘要 X是复数域上的光滑n维Fano簇,X的整体长度定义为l(X)=min{-KX·C|C是X上的有理曲线},如果l(X)=n-1,则X是以下五者之一:(1)X是光滑曲面上的Pn-2丛;(2)X是光滑曲线上的Pn-1丛;(3)X是光滑曲线上的Qn-1丛;(4)X是Del Pezzo流形;(5)对于X的一般纤维F,(F,LF)是Del Pezzo流形。其中,LF是X上的丰富线丛L在一般纤维F上的限制。 X is complex field of smooth N_dimensional FANO clusters,X is defined as the overall length l(X)=min{-KX ·C|C is a rational curve on X},if l(X)=n-1,X is the one of five results:(1) X is a smooth bundle on Pn-2(2) X is a smooth bundle on Pn-1(3) X is a smooth bundle on Qn-1(4) X is Del Pezzo manifold(5) F is the general fiber of X,(F,LF) is Del Pezzo manifold
作者 秦璇
出处 《长春理工大学学报(自然科学版)》 2011年第3期167-169,共3页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金(61070165)
关键词 光滑Fano簇 丰富线丛 射影空间 DEL Pezzo流形 smooth Fano variety ample line bundle projective space Del Pezzo manifold
  • 相关文献

参考文献9

  • 1Cho K, Miyaoka Y, Shephered N I. Characterizations of projective space and applications to complex symplectic manifolds [J].Advan Stud Pure Math, 2002,35 : 1-88.
  • 2Mori S.Threefolds whose canonical bundles are not numerically effective [J].Ann Math, 1982, 116: 133-176.
  • 3Fulton W.Intersection Theory [M]. New York: Springer-Verlag, 1998.
  • 4Lazasfeld R.Positivity in Algebraic GeometryI, II [M].Berlin: Springer-Verlag, 2004.
  • 5KawamataY, Matsuda K, Matsuki K.Introduction to the minimal model problem.Advan Stud Pure Math, 1987(10):283- 360 .
  • 6Ionescu P.Generalized adjunction and applications.Math Proc Camb Phil Soc,1986,99:452- 572.
  • 7Wisniewski J A.On contractions of extremal rays of Fano manifolds.J Reine Angew Math, 1991, 417: 141 -157.
  • 8Hartshome R.Algebraic Geometry.New York:Sprin ger-Verlag, 1978.
  • 9Fujita T.Remarks on quasi-polarized varieties.Nagoya Math J, 115 : 105-123(1989).

同被引文献12

  • 1MORI S. Flip Theorem and the Existence of Minimal Models for 3-Folds [J].J Amer Math Soc, 1988,1:117-253.
  • 2MORI S.Threefolds whose canonical bundles are not numerically effective [J].Ann Math, 1982, 116: 133-176.
  • 3BELTRAMENTI M, SOMMESE J. The Adjunc- tion Theory of Complex Projective Varieties [M]. Berlin: Walter de Gruyter, 1995.
  • 4KAWAMATA Y, MATSUDA K, MATSUKI K. Introduction to the minimal model problem. Advan Stud Pure Math.2002, 10: 283-360.
  • 5DEBARRE O. Higher-Dimensional Algebraic Ge- ometry[M].New York:Springer-Verlag, 2001.
  • 6WISNIEWSKI J. Length of extremal rays and gen- eralized adjunction[J].Math Z,1989,200:409-427.
  • 7ANDREATTA M, BALLICO E,WISNIEWSKI K. Two theorems on elementary contractions [J].Math Ann, 1993,297 : 191-198.
  • 8ANDREATTA M. Contractions of gorenstein po- larized varieties with high nef value [J].Math Ann, 1994, 300: 669-679.
  • 9GRIFFITHS P, HARRIS J. Principles of algebraic geometry [ M ] .Wiley, New York, 1978.
  • 10CHO K, MIYAOKA Y, BARRON S. Character- izations of projective space and applications to complex symplectic manifolds [J].Adv-Stud Pure Math, 2002,35 : 1-88.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部