期刊文献+

基于视觉敏感度的JPEG图像质量评价 被引量:1

JPEG Image Quality Assessment Based on Visual Sensitivity
下载PDF
导出
摘要 为解决无参考图像质量评价与人眼视觉系统(HVS)特征的一致性问题,提出一种基于视觉敏感度的JPEG图像质量评价方法。采用支持向量回归神经网络学习和模拟HVS特征与平均主观得分之间的函数关系,利用边缘幅度和长度、背景活动度和亮度等视觉敏感度特征,实现符合HVS特征的无参考图像质量评价。实验结果表明,该方法的误差小、精度高、预测性能好,并与HVS感知特征具有高度一致性。 This paper presents a visual sensitivity measurement method to assess the visual quality of JPEG images for consistency between image quality assessment without reference image and Human Visual System(HVS) features.Support Vector Regression Neural Network(SVR-NN) is used to approximate the functional relationship between HVS feature and Mean Opinion Score(MOS).The measuring of visual quality of JPEG images is realized using HVS features such as edge amplitude and length,background activity and luminance.Experimental results show that the method has less error,high accuracy,excellent estimation,and exhibits much higher correlation with HVS perception feature.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第19期191-193,共3页 Computer Engineering
关键词 视觉敏感度 支持向量回归 神经网络 图像质量 无参考评价 visual sensitivity Support Vector Regression(SVR) neural network image quality no-reference assessment
  • 相关文献

参考文献7

  • 1Gastaldo P, Zunino R. No-reference Quality Assessment of JPEG Images by Using CBP Neural Networks[C]//Proc. of the 17th International Conference on Artificial Neural Networks. Porto, Portugal: [S. l.], 2007: 772-775.
  • 2Suresh S, R Babu R V, Kim H J. No-reference Image Quality Assessment Using Modified Extreme Learning Machine Classifier[J]. Applied Soft Computing of Science Direct, 2009, 9(2): 541-552.
  • 3杨春玲,汪凡.基于结构相似度的CT域图像质量评价方法[J].计算机工程,2010,36(14):190-192. 被引量:9
  • 4Karunasekera S A, Kingsbury N G. A Distortion Measure for Blocking Artifacts in Images Based on Human Visual Sensitivity[J]. IEEE Trans. on Image Processing, 1995, 4(6): 713-724.
  • 5Chuang Chen-Chia, Su Shun-Feng. Robust Support Vector Regression Networks for Function Approximation with Outliers[J]. IEEE Trans. on Neural Networks, 2002, 13(6): 1322-1330.
  • 6李军,刘君华.Identification of dynamic systems using support vector regression neural networks[J].Journal of Southeast University(English Edition),2006,22(2):228-233. 被引量:1
  • 7Wang Zhou, Sheikh H R, Bovik A C. No-reference Perceptual Quality Assessment of JPEG Compressed Images[C]//Proc. of ICIP’02. [S. l.]: IEEE Press, 2002: 477-480.

二级参考文献5

  • 1Do M H,Vetterli M.The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J].IEEE Trans.on Image Processing,2005,14(12):2091-2106.
  • 2Zhou Wang,Conrad B.Image Quality Assessment:From Error Visibility to Structural Similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
  • 3Yang Chunling,Gao Wenrui.Distrete Wavelet Transform-based Structural Similarity for Image Quality Assessment[C] //Proc.of IEEE International Conference on Image Processing.[S.l.] :IEEE Press,2008.
  • 4Mannos J L,Sakrison D H.The Effects of a Visual Fidelity Criterion on the Encoding of Images[J].IEEE Trans,on Information Theory,1974,20(4):525-536.
  • 5Christopher J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J] 1998,Data Mining and Knowledge Discovery(2):121~167

共引文献8

同被引文献15

  • 1Sheikh H R,Sabir M F,Bovik A C.A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms[J].IEEE Transactions on Image Processing,2006,15(11):3441-3452.
  • 2Wang Zhou,Bovik A C,Sheikh H R,et al.Image Quality Assessment:From Error Visibility to Structural Similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
  • 3Shnayderman A,Gusev A,Eskicioglu A M.An SVD-based Grayscale Image Quality Measure for Local and Global Assessment[J].IEEE Transactions on Image Processing,2006,15(2):422-429.
  • 4Sheikh H R,Bovik A C,Veciana G D.An Information Fidelity Criterion for Image Quality Assessment Using Natural Scene Statistics[J].IEEE Transactions on Image Processing,2005,14(12):2117-2128.
  • 5Zhang Lin,Shen Ying,Li Hongyu.VSI:A Visual Saliency-induced Index for Perceptual Image Quality Assessment[J].IEEE Transactions on Image Processing,2014,23(10):4270-4281.
  • 6Ding Yong,Wang Shaoze,Zhang Dong.Full-reference Image Quality Assessment Using Statistical Local Correlation[J].Electronics Letters,2014,50(2):79-81.
  • 7Sheikh H R,Bovik A C.Image Information and Visual Quality[J].IEEE Transactions on Image Processing,2006,15(2):430-444.
  • 8Hu Anzhou,Rong Zhang,Dong Yin,et al.Image Quality Assessment Using a SVD-based Structural Projection[J].Signal Processing:Image Communication,2014,29(3):293-302.
  • 9Zhang Lin,Zhang Lei,Mou Xuanqin,et al.FSIM:A Feature Similarity Index for Image Quality Assessment[J].IEEE Transactions on Image Processing,2011,20(8):2378-2386.
  • 10Qi Huan,Jiao Shuhong,Lin Weisi,et.al.Content-based Image Quality Assessment Using Semantic Information and Luminance Differences[J].Electronics Letters,2014,50(20):1435-1436.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部