期刊文献+

非对称方势垒量子隧穿研究及其数值模拟 被引量:3

Study and numerical simulation for quantum tunneling characteristics in asymmetric potential barrier
下载PDF
导出
摘要 为解决传统量子力学方法在研究非对称双势垒问题上计算过于繁琐的问题,利用转移矩阵的方法分别研究了电子对于非对称单势垒和非对称双势垒的量子隧穿特性,对两种情况分别得出了简洁的透射率公式.数值计算结果表明,在合适的参数下,单、双结结构都表现出良好的电导开关效应,且在入射电子能量大于势垒高度时,透射系数呈现显著的周期变化的量子振荡效应,这些结果对相关电子器件的研发提供一定的参考价值. The quantum mechanical method for the asymmetric double-barrier problem is too complicated to calculate,we study quantum tunneling characteristics of electron in both asymmetric single-potential barrier and double-barrier structures by using the transfer matrix method.The simple formula of transmission rate are obtained for two cases.The numerical results show that good conductivity switching effect appears in both single-barrier and double-barrier structures under the appropriate parameters.It is also shown that the transmission coefficient appears quantum oscillation if the incident electron energy is greater than the barrier height.We hope that the present results can provide reference value for R D in electronic devices.
出处 《大学物理》 北大核心 2011年第10期7-10,29,共5页 College Physics
基金 解放军理工大学预研基金资助项目(2009JC01)
关键词 非对称势垒 量子隧穿 转移矩阵 相干输运 asymmetric barrier quantum tunnelig transfer matrix coherent transport
  • 相关文献

参考文献4

  • 1曾谨言.量子力学(卷I)[M].3版.北京:科学出版社,1995:98-108.
  • 2Yuasa S, Nagahama T, Suzuki Y. Spin-Polarized Resonant Tunneling in Magnetic Tunnel Junctions [ J ]. Science, 2002, 297: 234-237.
  • 3杨军,武文远,龚艳春.磁性隧道结中的量子相干输运研究[J].物理学报,2008,57(1):448-452. 被引量:2
  • 4Ferry D K, Goodniek S M. Transport in nanostruetures [ M ]. Cambridge: Cambridge University Press, 1997 : 99-109.

二级参考文献15

  • 1杨军,汪军.自旋注入效率的电学探测[J].解放军理工大学学报(自然科学版),2005,6(6):609-612. 被引量:5
  • 2朱林,陈卫东,谢征微,李伯臧.NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻[J].物理学报,2006,55(10):5499-5505. 被引量:4
  • 3Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273.
  • 4Mathon J, Umerski A 1999 Phys. Rev. B 60 1117.
  • 5Mattana R, George J M, Jaffres H, Nguyen Van Dau F, Fert A, Lepine B, Guivarc' h A, Jezequel G 2003 Phys. Rev. Lett. 90 166601.
  • 6Li Y X , Li BZ2005 Chin. Phys. 14 1021.
  • 7Yamashita T, Imamura H, Takahashi S, Maekawa S 2003 Phys. Rev. B 67 094515.
  • 8Zheng Z M, Qi Y N, Xing D Y, Dong J M 1999 Phys. Rev. B 59 14505.
  • 9Yang J, Wang J, Zheng Z M, Xing D Y, Chang C R 2005 Phys. Rev. B 71 214434.
  • 10Datta S 1995 Electronic transport in mesoscopic systems (Cambridge : Cambridge University Press) p117.

共引文献1

同被引文献34

  • 1祝娅,田强.Kronig-Penney模型中的电子波函数[J].大学物理,2005,24(2):38-39. 被引量:2
  • 2曾谨言.量子力学卷I[M].北京:科学出版社,1995:408-411.
  • 3史义龙,娄平.一维转移矩阵中元素间关系的探讨[J].大学物理,2007,26(8):6-8. 被引量:1
  • 4T D Schuhz, I) C Mattis, E. H. Lieb. Two-Dimensional lsing Model as a Soluble Problem of Many Fermions [J]. Rev Mod Phys, 1964(36) : 856-871.
  • 5Masuo Suzuki. Transfer-matrix method and Monte Carlo simulation in quantum Spin systems[J ]. Phys Rev B, 1985( 31 ) : 2957- 2965.
  • 6H. Betsuyaku. Study of One-Dimensional XY Model by the Transfer-Matrix Method [ J ]. Phys. Rev. Lett. 1984(53 ) : 629~632.
  • 7P. Sautet, C Joachim. Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach[J]. Phys Rev B, 1988(38): 12238~12247.
  • 8C. C. Wan, Tiago De Jesus, Hong Guo. Magnetoconductance of a quantum wire with several antidots : A transfer-matrix study [ J ]. Phys. Rev. B, 1995 (57) : 11907~ 11910.
  • 9D. Z-Y Ting, E. T. Yu, T.C. MeGill, Multiband treatment of quantum transport in interband tunnel devices/J ].Phys. Rev. B, 1992(45) :3583-3592.
  • 10Y. X. Liu, D. Z-YTing, T. C. MeGill, Efficient, numerically stable multiband k "p treatment of quantum transport in semiconductor heterostructures [ J ].Phys. Rev. B, 1996( 54 ) : 5675 ~5683.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部