期刊文献+

基于操作行为的隧道木马检测方法 被引量:10

Tunnel Trojan Detection Method Based on Operation Behavior
下载PDF
导出
摘要 木马通常利用HTTP隧道技术突破防护设备,对网络安全造成威胁。针对该问题,提出一种利用木马操作行为检测网络中HTTP隧道木马的方法。该方法通过6个统计特征描述正常的HTTP会话,采用HTTP隧道技术发现木马操作之间的差别,利用数据挖掘中C4.5决策树分类算法对2种会话进行分类。实验结果表明,该方法能检测多种已知的HTTP隧道木马。 Some Trojans use HTTP tunnel to pass through a variety of network security devices,which poses a serious threat to current network security.This paper presents a new method to detect the HTTP tunneling Trojans by using operation behavior characteristics.The difference between normal HTTP session and Trojan operation session with HTTP tunneling are depicted by six statistics eigenvalues,and C4.5 decision tree classification algorithm in data mining is introduced to classify the two sessions.Experimental results show that the method can efficiently detect many known HTTP tunnel Trojans.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第20期123-126,共4页 Computer Engineering
基金 国家"863"计划基金资助项目(2008AA01Z420)
关键词 HTTP隧道 网络会话 会话特征 木马检测 C4.5决策树 HTTP tunnel network session session characteristic Trojan detection C4.5 decision tree
  • 相关文献

参考文献5

  • 1Castro S. Covert Channel and Tunneling over the HTTP Protocol Detection[EB/OL]. (2010-11-02). http://gray-world.net/projects/ papers/html/ cctde.html.
  • 2Allix P. Covert Channels Analysis in TCP/IP Networks[EB/OL]. (2010-11-23). http://gray-world.net/papers/ALLIX_Covert_Cha- nnels_analysis_in_TPC_IP_networks.pdf.
  • 3Rowland C H. Covert Channels in the TCP/IP Protocol Suite[J]. First Monday, 1997, 2(5): 1-8.
  • 4Pack D, Willian S, Seth W, et a1. Detecting HTTP Tunneling Activities[C]//Proc. of the 3rd Annual Information Assurance Workshop. New York, USA: IEEE Press, 2002.
  • 5郑洪英,侯梅菊,王渝.入侵检测中的快速特征选择方法[J].计算机工程,2010,36(6):262-264. 被引量:23

二级参考文献5

  • 1Wang Yujia, Yang Yupu. Particle Swarm Optimization with Preference Order Ranking for Multi-objective Optimization[J]. Information Sciences, 2009, 179(12): 1944-1959.
  • 2Kiranyaz S, Ince T, Yildirim A, et al. Evolutionary Artificial Neural Networks by Multi-dimensional Particle Swarm Optimization[J]. Neural Networks, 2009, 22(10): 1448-1462.
  • 3Marinakis Y, Marinaki M. A Hybrid Multi-swarm Particle Swarm Optimization Algorithm for the Probabilistic Traveling Salesman Problem[J]. Computers & Operations Research, 2010, 37(3): 432-442.
  • 4丁蕊,董红斌,冯宪彬.用于分类问题的粒子群优化遗传算法[J].计算机工程,2009,35(17):201-203. 被引量:9
  • 5崔自峰,吉小华.基于线性判别分析的特征选择[J].计算机应用,2009,29(10):2781-2785. 被引量:8

共引文献22

同被引文献74

  • 1刘鹏,姚正,尹俊杰.一种有效的C4.5改进模型[J].清华大学学报(自然科学版),2006,46(z1):996-1001. 被引量:28
  • 2李世淙,云晓春,张永铮.一种基于分层聚类方法的木马通信行为检测模型[J].计算机研究与发展,2012,49(S2):9-16. 被引量:13
  • 3程光,龚俭,丁伟,徐加羚.面向IP流测量的哈希算法研究[J].软件学报,2005,16(5):652-658. 被引量:54
  • 4Zhang Like, White G B. An Approach to Detect Executable Content tbr Anomaly Based Network Intrusion Detection[C]//Proc. of Parallel and Distributed Processing Symposium. Long Beach, USA: [s. n.], 2007: 1-8.
  • 5Dusi M. Tunnel Hunter: Detecting Application-layer Tunnels with Statistical Fingerprinting[J]. Computer Networks, 2009, 53(1): 81-97.
  • 6Liu Ting, Guan Xiaohong, Zheng Qinghua, et al. Prototype Demonstration: Trojan Detection and Defense System[C]//Proc. of the 6th IEEE Cont~rence on Consumer Communications and Networking Conference. Piscataway, USA: [s. n.], 2009: 64-65.
  • 7Zhou Yonglin, Wang Minghua. 2011 China internet network security situation [EB/OL]. [2012-05-21]. http://www, cert. org. cn/userfiles/file/20120 3192011 annualreport(1 ).pdf.
  • 8Matrosov A, Rodionov E, Harley D, et al. Stuxnet under the microscope [EB/O L]. [2012-10-17]. http://www, eset. cornus resources/white-papers/stuxnet_under the mciroscope.pdf.
  • 9Falliere N, Murchu O L, Chien E. W32. stuxnet dossier [EB/OL]. [2012-05-21 ]. http://www.cert.org.cn/userfiles/ file/201203192011 annualreport( 1 ).pdf.
  • 10Bencs~th B, Pek G, Buttyan L, et al. Duqu: A Stuxnet-like malware found in the wild [EB/OL]. [2012-07-14]. http:// cry~ys.hu/mfelegyhazi/publications/Bencsath2011 duqu.pdJ:.

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部