期刊文献+

基于SFA和GLCM的影像特征提取方法 被引量:1

Image Feature Extraction Method Based on SFA and GLCM
下载PDF
导出
摘要 针对遥感影像中同类样本差异性较大的缺点,提出一种基于SFA和灰度共生矩阵(GLCM)的遥感影像特征提取方法。对原始图像进行SFA变换,利用SFA的生物视觉特性消除图像中的同类差异性,对变换得到的图像进行GLCM计算,获得基于SFA和GLCM的新型特征。实验结果证明,SFA预处理能降低遥感影像的同类差异性,提高特征的可区分性,其效果优于传统的GLCM特征提取方法。 As there are still many difference between the remote sensing image from the same class,this paper proposes a new method of extracting features based on Slow Feature Analysis(SFA) and Gray Level Co-occurrence Matrix(GLCM).The image is first processed with SFA algorithm.It can eliminate the difference of the object from the same class as the biological characteristics of SFA.Then the GLCM feature is extracted from the SFA data.Results indicate that with the preprocessing of SFA,it can effectively reduce the diversity of samples from the same class and increase the distinguishability of the feature,the method is more effective and competitive than the conventional GLCM feature extraction method.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第20期175-177,共3页 Computer Engineering
基金 国家自然科学基金资助项目(41071256) 国家"973"计划基金资助项目(2006CB701303)
关键词 图像解译 SFA变换 灰度共生矩阵 特征提取 支持向量机 image interpretation Slow Feature Analysis(SFA) transformation Gray Level Co-occurrence Matrix(GLCM) feature extraction Support Vector Machine(SVM)
  • 相关文献

参考文献5

  • 1Hinton G. Connectionist Learning Procedures[J]. Artificial Intelli- gence, 1989, 40(1-3): 185-234.
  • 2Berkes P, Wiskott L. Slow Feature Analysis Yields a Rich Reper- toire of Complex Cell Properties[J]. Jounal of Vision, 2005, 5(6): 579-602.
  • 3苑丽红,付丽,杨勇,苗静.灰度共生矩阵提取纹理特征的实验结果分析[J].计算机应用,2009,29(4):1018-1021. 被引量:88
  • 4Wiskott L, Sejnowski T J. Slow Feature Analysis: Unsupervised Learning of Invariances[J]. Neural Computation, 2002, 14(4): 715-770.
  • 5Huang Yaping, Zhao Jiali, Tian Mei, et al. Slow Feature Discri- minant Analysis and Its Application on Handwritten Digit Recog- nition[C]//Proc. of International Joint Conference on Neural Networks. Atlanta, Georgia, USA: [s. n.], 2009: 1294-1297.

二级参考文献9

  • 1张建东,苏鸿根.基于内容的图像检索关键技术研究[J].计算机工程,2004,30(14):119-121. 被引量:17
  • 2郭德军,宋蛰存.基于灰度共生矩阵的纹理图像分类研究[J].林业机械与木工设备,2005,33(7):21-23. 被引量:55
  • 3乔志杰,蒋加伏.基于小波分解的纹理图像检索[J].计算机与数字工程,2006,34(6):75-78. 被引量:6
  • 4王波,姚宏宇,李弼程.一种有效的基于灰度共生矩阵的图像检索方法[J].武汉大学学报(信息科学版),2006,31(9):761-764. 被引量:20
  • 5TAMURA H, MORI S, YAMAWAKI T. Texture features corresponding to visual perception[ J]. IEEE Transactions on Systems, Man, and Cybernetics, 2003, 8(6): 460-473.
  • 6JIANCHANG M, ANIL K J. Texture classification and segmentation using muhiresolution simultaneous autoregressive models[ J]. Pattern Recognition, 1992, 25(2): 173-188.
  • 7DAUGMAN J G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[ J]. Journal of the Optical Society of America A, 1985, 2(7): 1160-1169.
  • 8HARALICK R M, SHANMUGAM K, DINSTEIN I H. Texture features for image classification[ J]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6) : 610 -621.
  • 9CONNERS RW, HARLOW C A. A theoretical comparison of texture algorithms[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(3): 204-222.

共引文献87

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部