期刊文献+

基于改进HMM的文本信息抽取模型 被引量:9

Text Information Extraction Model Based on Improved HMM
下载PDF
导出
摘要 提出一种基于改进隐马尔可夫模型(HMM)的文本信息抽取模型。给出一个新假设,使用绝对平滑算法对模型参数进行平滑,利用Viterbi算法对观察值序列进行正序和逆序解码,基于N-Gram模型对2次解码结果进行对比消歧,得到较准确的状态序列。实验结果表明,该信息抽取模型能提高信息抽取的准确率。 This paper proposes a text information extraction model based on improved Hidden Markov Model(HMM).It gives a new assumption of observation emission.And the absolute smoothing algorithm is used to smooth the parameters of the model.The model recovers the most-likely state sequence of the observation sequence and the reverse observation sequence with the Viterbi algorithm.It compares the results with each other based on N-Gram model,and outputs a more accurate result for the state sequence.Experimental results indicate that this model has effectively improved precision.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第20期178-179,182,共3页 Computer Engineering
基金 江苏省高校自然科学基础研究基金资助项目(08KJD120004) 全国教育科学规划德育专项基金资助项目(GEA090005)
关键词 隐马尔可夫模型 绝对平滑 观察值 信息抽取 引文信息 Hidden Markov Model(HMM) absolute smoothing observation information extraction citation information
  • 相关文献

参考文献6

二级参考文献53

  • 1林亚平,刘云中,周顺先,陈治平,蔡立军.基于最大熵的隐马尔可夫模型文本信息抽取[J].电子学报,2005,33(2):236-240. 被引量:48
  • 2周俊生,戴新宇,尹存燕,陈家骏.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5):804-809. 被引量:112
  • 3洪铭材,张阔,唐杰,李涓子.基于条件随机场(CRFs)的中文词性标注方法[J].计算机科学,2006,33(10):148-151. 被引量:56
  • 4Kumatani K,Nakamura S,Shikano K.An Adaptive Integration Based on Product HMM for Audio-visual Speech Recognition[C]// Proceedings of IEEE ICME'01.Tokyo,Japan:[s.n.],2001:1020-1023.
  • 5Lee J S,Park C H.Robust Audio-visual Speech Recognition Based on Late Integration[J].IEEE Transactions on Multimedia,2008,10(5):767-779.
  • 6Dupont S,Luettin J.Audio-visual Speech Modeling for Continuous Speech Recognition[J].IEEE Transactions on Multimedia,2000,2(3):141-151.
  • 7Zhao Hui,Tang Chaojing,Yu Tao.Fast Thresholding Segmentation for Image with High Noise[C]//Proceedings of ICIA'08.Zhangjiajie,China:[s.n.],2008:290-295.
  • 8Rabiner L R.A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[J].Proceedings of the IEEE,1989,77(2):257-286.
  • 9Bregler C,Omohundro S M.Nonlinear Manifold Learning for Visual Speech Recognition[C]//Proc.of IEEE Int'l Conf.on Computer Vision.Piscataway,NJ,USA:[s.n.],1995:494-499.
  • 10[1]A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A machine learning approach to building Domain-Specific Search Engines [A]. In Proceedings of IJCAI-99 [C]. 622-667.

共引文献114

同被引文献124

引证文献9

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部