期刊文献+

多次推理中的BP算法优化 被引量:1

Optimization of BP Algorithm in Repeated Inference
下载PDF
导出
摘要 使用BP算法求解效用最大化问题时,容易产生大量冗余计算。为此,对标准BP算法进行优化,在推理过程中,对一些受限定条件影响较小的结点,直接利用前次推理结果,无需重新计算其边缘概率,并证明这种优化不会显著影响推理结果。将该算法应用于组合竞拍模型进行测试。仿真结果表明,相对于标准BP算法,该优化算法能提升求解效用最大化问题时的收敛效率。 It always produces redundant computation when applying Belief Propagation(BP) algorithm to MEU problem.To improve such a situation,an optimization to BP is proposed that reuse last influent result instead of recomputing the marginal probability if the node is not significantly affected by the change of condition,and prove is given to confirm that the optimization does not significantly affect the influence result.A simulation by applying the optimized algorithm to combinatorial auctions gives the result that compare to the standard BP algorism,optimized algorism efficiently improve the efficiency of inference without significantly affect the quality of the solutions.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第20期186-188,共3页 Computer Engineering
基金 "985"二期工程科研基金资助项目(T222103003)
关键词 多次推理 BP算法 消息传播 有效推理 组合竞拍 repeated inference Belief Propagation(BP) algorithm message propagation efficient inference combinatorial auctions
  • 相关文献

参考文献7

  • 1Della A L, Grove A J, Kasif S, et al. Logarithmic-time Updates and Queries in Probabilistic Networks[J]. Journal of Artificial Intelligence Research, 1996, 4(1): 37-59.
  • 2Ihler A T, Fisher J W, Willsky A S. Loopy Belief Propagation: Convergence and Effects of Message Errors[J]. Journal of Machine Learning Research, 2005, 12(6): 905-936.
  • 3Howard R A, Matheson J E. Influence diagrams[J]. Decision Analysis, 2005, 3(2): 127-143.
  • 4Jonathan S Y, William T F, Yair W. Understanding Belief Propagation and Its Generalizations: Exploring Artificial Intelligence in the New Millennium[M]. [S. l.]: Morgan Kaufmann Publishers Inc., 2003.
  • 5Cramton P, Shoham Y, Steinberg R. Combinatorial Auctions[M]. [S. l.]: MIT Press, 2006.
  • 6Sandhol M. Algorithm for Optimal Winner Determination in Combinatorial Auctions[J]. Artificial Intelligence, 2002, 135(2): 1- 54.
  • 7夏文超,刘建平,戴瑜兴.基于Matlab与Linux的神经网络实现方法[J].计算机工程,2010,36(14):153-155. 被引量:4

二级参考文献2

共引文献3

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部