期刊文献+

基于多示例学习的对象图像推荐算法

Object Image Recommendation Algorithm Based on Multi-instance Learning
下载PDF
导出
摘要 用户评分矩阵稀疏问题影响协同过滤的推荐性能。为此,提出一种基于多示例学习的对象图像推荐算法。将分割区域的视觉特征作为图像中的示例,利用多样性密度函数求得最大多样性密度点,使用正负图像内容评价不同用户间的相似性,将其与传统余弦相似性进行组合,从而实现推荐。实验结果表明,该算法提高了推荐性能。 The sparse user-item matrix often hurts the performance of recommendation system.Aiming at this problem,an object image recommendation algorithm based on multi-instance learning is proposed.The images are regarded as bags and the segmented regions as instances.The Diverse Density(DD) function is adopted to search the maximum DD point;Next the positive and negative images is used to measure the users' similarity.The similarity result is integrated with the traditional cosine similarity.Experimental results show that,the algorithm can improve the recommendation performance.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第20期280-281,284,共3页 Computer Engineering
基金 教育部新世纪优秀人才基金资助项目(NCET-07-0693) 陕西省教育厅科研基金资助项目(2010JK849)
关键词 对象图像推荐 协同推荐 多示例学习 多样性密度函数 组合推荐 object image recommendation collaborative recommendation multi-instance learning diversity density function combination recommendation
  • 相关文献

参考文献8

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 2张付志,张启凤.融合多系统用户信息的协同过滤算法[J].计算机工程,2009,35(21):258-260. 被引量:2
  • 3周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 4陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 5Li Bin, Yang Qiang, Xue Xiangyang. Transfer Learning for Collaborative Filtering Via a Rating-matrix Generative Model[C]// Proc. of the 26th International Conference on Machine Learning. Montreal, Quebec, Canada: [s. n.], 2009.
  • 6Dietterich T G, Lathrop R H, Lozano P T. Solving the Multiple Instance Problem with Axis-parallel Rectangles[J]. Artificial Intelligence, 1997, 89(12): 31-71.
  • 7Maron O, Lozanom P T. A Framework for Multiple-instance Learning[C]//Proc. of the 1997 Conference on Advances in Neural Information Processing Systems. Massachusetts, Boston, USA: MIT Press, 1998: 570-576.
  • 8Wang Changhu, Zhang Lei, Zhang Hongjiang. Graph Based Multiple-instance Learning for Object-based Image Retrieval[C]// Proc. of the 1st ACM International Conference on Multimedia Information Retrieval. Vancouver, Canada: [s. n.], 2008.

二级参考文献87

  • 1徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:67
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献685

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部