期刊文献+

基于混合遗传优化的正交小波变换盲均衡算法 被引量:4

Hybrid Blind Equalization Algorithm Based on Genetic Algorithm and Wavelet Transform
下载PDF
导出
摘要 常数模算法(CMA)收敛速度慢,初始权向量的确定缺乏理论依据,容易陷入局部极小值。针对这些问题,在正交小波变换盲均衡算法(WT-CMA)的基础上,提出了基于混合遗传优化的正交小波变换盲均衡算法(GAWT-CMA)。该算法在常规遗传算法的父代和子代之间嵌入WT-CMA形成混合算法,利用遗传算子的全局收敛性进行宏观搜索,用WT-CMA进行局部搜索。由混合算法用少量数据进行权向量的优化,在全局范围内获得较好的初始权向量,再用WT-CMA收敛到全局最优值。水声信道的仿真结果显示,GAWT-CMA完成收敛比CMA快约9 000次,比WT-CMA快约3 000次,比GA-CMA快约1 000次,稳态误差对比CMA小约3dB,比WT-CMA小约1dB,比GA-CMA约小0.5dB。 Constant modulus algorithm (CMA) has slow convergence speed and easily immerges in partial minimum owing to the lack of initialization theory. Aiming at these disadvantages, hybrid blind equalization algorithm based on genetic algorithm and wavelet transform (GAWT-CMA) is proposed to improve the performance of CMA. The proposed hybrid algo- rithm is formed by embeding WT-CMA in normal genetic algorithm. It uses the global convergence of genetic operator to conduct a macro-search, and conducts micro-search with WT- CMA. It obtains a better initialization weight vector in overall range with a little bit of data by the hybrid algorithm, and then gets globally optimal solution by WT-CMA. Computer simulation with underwater acoustic channel shows that GAWT-CMA's convergence is about 9 000 times faster than CMA, about 3 000 times/aster than WT-CMA, and its steady-state error is smaller than CMA by 3 dB, smaller than WT-CMA by about 1 dB.
出处 《数据采集与处理》 CSCD 北大核心 2011年第5期503-507,共5页 Journal of Data Acquisition and Processing
基金 全国优秀博士学位论文作者专项资金(200753)资助项目 安徽省高等学校自然科学基金(KJ2010A096)资助项目 江苏省自然科学基金(BK2009410)资助项目 江苏省高等学校自然科学基金(08KJB510010)资助项目 江苏省六大人才高峰基金(2008026)资助项目 江苏省高校优势学科"传感网与现代气象装备"资助项目
关键词 常数模算法 盲均衡 正交小波变换 遗传算法 constant modulus algorithm(CMA) blind equalization orthogonal wavelet transform genetic algorithm
  • 相关文献

参考文献5

二级参考文献16

共引文献71

同被引文献32

  • 1肖瑛,刘国枝,李振兴,董玉华.遗传优化神经网络的水声信道盲均衡[J].应用声学,2006,25(6):340-345. 被引量:17
  • 2胡明春,李建新.赋形波束双弯曲反射面天线探讨[J].现代雷达,1996,18(5):64-68. 被引量:16
  • 3Acila S L,Carpes W P, Vasconcelos J A. Optimization of an offset reflector antenna using genetic algorithms [J]. IEEE Transactions on Magnetics, 2004,40 (2) 1256-1259.
  • 4Merrill I S. Introduction to radar system[M]. New York : Mc Graw-Hill Book Company, 1980.
  • 5陈宵.DNA遗传算法应用与研究[D].杭州:浙江大学,2010:19-24.
  • 6Zhao Yuanqing,Jin Xianhua,Liu Yong.The preemptive EDF optimization based on DNA-genetic algorithm[C]// 2nd Conference on Environmental Science and Information Application Technology.Wuhan,China:IEEE,2010:121-124.
  • 7Li Yongjie,Lei Jie.A feasible solution to the beamangle-optimization problem in radiotherapy planning with a DNA-based genetic algorithm[J].IEEE Transactions on Biomedical Engineering,2010,57(3):499-508.
  • 8Zhang Duan,Xia Yanling,He Xiongxiong,et al.Multi-step evolution strategy based DNA genetic algorithm for parameters estimating[C]// The 4th International Conference on Intelligent Control and Information Processing (ICICIP).Beijing,China:IEEE,2013:828-835.
  • 9Wang Kangtai,Wang Ning.A novel RNA genetic algorithm for parameter estimation of dynamic systems[J].Chemical Engineering Research and Design,2010,88(11):1485-1493.
  • 10Cichocki A, Amari S. Adaptive blind signal and image processing.- learning algorithms and application[M]. New York.. Wiley Press, 2002.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部