期刊文献+

基于证据理论的视频语义概念检测 被引量:6

Video Semantic Concept Detection Based on Evidence Theory
下载PDF
导出
摘要 视频语义概念检测是跨越"语义鸿沟"问题,实现基于语义的视频检索的前提。本文提出了一种基于证据理论的视频语义概念检测方法。首先,分别提取了镜头关键帧的分块颜色矩、小波纹理特征和边缘方向直方图特征;然后,利用支持向量机(Support vector machine,SVM)对3种特征数据分别进行训练,分别建立分类器模型;再次,对各SVM模型泛化误差进行分析,采用折扣系数法对不同SVM模型输出的分类结果进行修正;最后,采用证据融合公式对修正后的输出进行融合,把融合结果作为最终的概念检测结果。实验结果表明,新方法提高了概念检测的准确率,优于传统的线性分类器融合方法。 Video semantic concept detection is a prerequisite to solve the emantic gap' problem and realize semantic-based video retrieval. A video semantic concept detecting method based on the evidence theory is proposed. Firstly, features including grid color moment, wavelet texture and edge direction histogram are extracted from the key frames of video shots. Then, for each type of feature, an SVM model is trained. Thirdly, by analyzing the generalization error of each SVM model, a discounting coefficient method is implemented to modify the classification results of these models. Finally, these modified results are fused with an evidence fusion equation, and the fused result is regarded as the final semantic concept detection result. Experimental results show that the new method has improved the detection accuracy and outperforms the traditional linear classifier fusion method.
出处 《数据采集与处理》 CSCD 北大核心 2011年第5期536-541,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60872142)资助项目
关键词 视频语义概念 支持向量机 证据理论 分类器融合 video semantic concept support vector machine evidence theory classifier fusion
  • 相关文献

参考文献11

  • 1Snoek C G M, Worring M. Concept-based video retrieval [J]. Foundations and Trends in Information Retrieval, 2009, 2(4) :215-322.
  • 2Aly R, Doherty A, Hiemstra D, et al. Beyond shot retrieval: searching for broadcast news items using language models of concepts [C]//ECIR 2010-32nd European Conference on Information Retrieval. Milton Keynes, UK.. Springer, 2010 : 28-31.
  • 3Natsev A, Naphade M, Tesic J. Learning the semantics of multimedia queries and concepts from a number of examples [C]//Proceedings of Multimedia'05. Singapore: ACM, 2005..598-607.
  • 4Chang S-F, Hsu W, Jiang Wei, et al. Columbia university TRECVID-2006 video search and high-level feature extraction [ R ], TRECVID Workshop, Washington DC: [s. n. ],2006.
  • 5Burges C J G. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2) :121-167.
  • 6Chapelle O, Vapnik V, Bousquet O, et al. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1) : 131-159.
  • 7Smith J, Naphade M, Natsev A. Multimedia semantic indexing using model vectors [C]//Proceedings of ICMEr03. Dhaka, Bangladesh: IEEE, 2003: 445- 448.
  • 8Shafer G. A mathematical theory of evidence. Princeton [M]. New Jersey: Princeton University Press, 1976: 10-40.
  • 9李弼程,王波,魏俊,钱曾波,黄玉琪.一种有效的证据理论合成公式[J].数据采集与处理,2002,17(1):33-36. 被引量:203
  • 10Naphade M, Kennedy L, Kender J, et al. LSCOM-lite: a light scale concept ontology for multimedia understanding for TRECVID 2005 [R]. IBM Research Tech Report, [s. l. ]:IBM Watson Research Center, 2005.

二级参考文献1

共引文献202

同被引文献67

  • 1程娟,平西建,周冠玮.基于多特征和SVM的文本图像版面分类方法[J].数据采集与处理,2008,23(5):569-574. 被引量:6
  • 2何友,关欣,王国宏.多传感器信息融合研究进展与展望[J].宇航学报,2005,26(4):524-530. 被引量:61
  • 3宿陆,李全龙,徐晓飞,过晓春.基于D-S证据理论的传感器网络数据融合算法[J].小型微型计算机系统,2006,27(7):1321-1325. 被引量:22
  • 4Zervas E,Mpimpoudis A,Anagnostopoulos C,et al.Multisensor data fusion for fire detection[J].Information Fusion,2011 (12):150-159.
  • 5Wang Yan,Yu Chunyu,Zhang Yongming.Fire detection model in tibet based on gray-fuzzy neural network algorithm[J].Expert Systems with Application,2011,38:9580-9586.
  • 6Sivic J, Zisserman A. Video Google: A text retrieval approach to object matching in videos[C]//Proe of 9th IEEE Interna- tional Conference on Computer Vision. Nice, France: [s. n. ], 2003:1470-1477.
  • 7Wu Lei, Li Mingjing, Li Zhiwei, et al. Visual language modeling for image elassification[C]//Proe of International Work- shop on Multimedia Information Retrieval (MIRr07). Augsburg, Germany: [s.n.], 2007:115-124.
  • 8Wu Lei, Hu Yang, Li Mingjing, et al. Scale-invariant visual language modeling for object eategorization[J]. IEEE Transac- tions on Multimedia, 2009,11(2) :286-294.
  • 9Jurie F, Triggs B. Creating efficient eodebooks for visual recognition[C]//Proe of International Conference on Computer Vi- sion. Beijing, China, [s. n. ], 2005:604-610.
  • 10Jegou H, Douze M, Schmid C. Packing bag-of features[C]//Proc of IEEE 12th International Conference on Computer Vislon (ICCV). Kyoto, Japan: [s.n.], 2009:2357-2364.

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部