期刊文献+

基于独立分量分析与希尔伯特-黄变换的轴承故障特征提取 被引量:24

Rolling element bearing fault feature extraction based on HHT and independent compoment analysis
下载PDF
导出
摘要 滚动轴承早期故障信号具有能量小、频带分布宽等特征,易受到其它能量较大振源信号的干扰。传统的希尔伯特-黄变换(HHT)对信噪比大、多频率调制信号常因不能对其所包含的固有模式函数(IMF)实现准确分离和去除调制干扰分量而失效。提出了基于HHT和独立分量分析(ICA)的滚动轴承诊断新方法。该方法首先利用经验模式分解(EMD)将滚动轴承振动信号分解成若干平稳的本征模式函数IMF分量,通过提取若干包含主要信息的IMF分量,应用带通滤波器和Hilbert变换获取IMF分量的高频包络波形,再应用ICA分离包络波形并进行频谱分析,进而判断滚动轴承的运行状况。仿真和试验分析结果验证了本方法的可行性。 Vibration signal generated by incipient faults of rolling element bearing is usually with low energy and dispersed frequency distribution,it is easily merged in strong disturbances of other vibration sources.Using Hilbert-Huang transformation(HHT) directly may fail to remove noise from observed modulated signals and separate their intrinsic mode functions(IMFs) accurately since they are with lower signal-to-noise ratio and multi-frequency modulation.Here,a new fault-diagnosis approach was proposed based on ICA and HHT.With the approach,the vibration signals were decomposed using the empirical mode decomposition(EMD) to get stable IMF components at first.Then,the IMFs containing the fault information of a rolling element bearing were selected and the corresponding envelopes were extracted with a band-pass filter and Hilbert transformation.Subsequently,the independent component analysis(ICA) was employed to separate the envelopes into independent components(ICs) according to independence of vibration sources.Finally,the envelope spectra of the ICs were calculated,respectively and compared with the fault characteristics of rolling element bearings to realize the accurate fault diagnosis of rolling element bearings.Simulations and tests verified the feasibility of the method.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第10期45-49,共5页 Journal of Vibration and Shock
基金 教育部留学回国人员科研启动基金([2009]1590) 云南省教育厅科学研究基金(09J0006) 昆明理工大学学生课外学术科技创新基金(2010YC035) 昆明理工大学研究生课外学术科技创新基金(YCA200909)
关键词 独立分量分析 希尔伯特-黄变换 经验模式分解 滚动轴承 特征提取 independent component analysis(ICA) Hilbert-Huang transformation(HHT) empirical mode decomposition(EMD) rolling element bearing fault feature extraction
  • 相关文献

参考文献9

  • 1Huang NE.Shen Z,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.Proceeding of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences,1998,454:903-995.
  • 2陈建国,张志新,郭正刚,王奉涛,李宏坤.独立分量分析方法在经验模式分解中的应用[J].振动与冲击,2009,28(1):109-111. 被引量:13
  • 3Tang XG,Guo Y,Ding YC,Zheng HW.Application of Independent Component Analysis in Rolling Element Bearing[C],Proc of the 2010 MIMT,January 22-24,2010:74-78.
  • 4Yu Guo,Kok Kiong Tan.Order-crossing removal in Gabor order tracking by independent component analysis[J],Journal of Sound and Vibration,2009,325(1-2,7):471-488.
  • 5Yu Guo,Kok Kiong Tan.High efficient crossing-order decoupling in Vold-Kalman filtering order tracking based on independent component analysis[J],Mechanical Systems and Signal Processing,2010,24(6):1756-1766.
  • 6Hyvaerinen A.Independent Component Analysis [M].1999,10(3):626-634.
  • 7Hyvaerinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.
  • 8杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(2):12-15. 被引量:47
  • 9陈进.机械设备振动监测与故障诊断[M],上海:上海交通大学出版社,1997:98-102.

二级参考文献10

  • 1胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 2Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 8(3) :622-634.
  • 3Huang N E, Wu M C, Long S R et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. The Royal Society, Proc. R. Soc. Lond. A, 2003: 2317-2345.
  • 4Rilling G, Flandrin P, Goncalves P. On Empirical Mode Decomposition and its a lgorithms [ J ]. IEEE Sig. Pro. Lett. , 2003 : 326-329.
  • 5Paya B A,Esat I I. Artificial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms as a Preprocessor. Mechanical Systems and Signal Processing. 1997,11(5):751-765
  • 6Jack L B,Nandi A K,Mccormick A C. Diagnosis of Rolling Element Bearing Faults Using Radial Basis Function Networks. Applied signal processing .1999,6:25-32
  • 7Huang N E ,et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis.Proc. R. Soc.Lond .A,1998,454:93-99
  • 8钟振茂,陈进,钟平.盲源分离技术用于机械故障诊断的研究初探[J].机械科学与技术,2002,21(2):282-284. 被引量:14
  • 9杨竹青,胡德文.独立成分分析方法在盲源信号分离中的应用[J].计算机测量与控制,2002,10(3):200-202. 被引量:19
  • 10陈忠,郑时雄.基于经验模式分解(EMD)的齿轮箱齿轮故障诊断技术研究[J].振动工程学报,2003,16(2):229-232. 被引量:53

共引文献60

同被引文献275

引证文献24

二级引证文献252

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部