期刊文献+

基于自适应多尺度形态梯度变换的滚动轴承故障特征提取 被引量:31

Feature extraction for roller bearing fault diagnosis based on adaptive multi-scale morphological gradient transformation
下载PDF
导出
摘要 滚动轴承故障信号是一种典型的周期性冲击信号,如何从含有强噪声的振动信号中有效地提取出冲击特征信号是轴承故障诊断的关键。基于数学形态学理论,提出了一种自适应多尺度形态梯度变换(AMMG)方法,能够在有效抑制噪声的同时很好的保留信号的细节。仿真信号和实测轴承故障信号的分析结果表明,与常用的包络解调分析和近来提出的另一种基于数学形态学的形态闭变换方法相比较,自适应多尺度形态梯度变换具有更强的噪声抑制和脉冲提取能力,并且计算简单、快速,为滚动轴承故障特征提取提供了一种有效的方法。 Impulsive type signal is the characteristic response of a defected roller bearing.How to extract impulsive signal from a noised vibration signal becomes the key step for bearing fault diagnosis.A novel method named adaptive multi-scale morphological gradient(AMMG) based on mathematical morphology was proposed for feature extraction of a roller bearing fault signal here.The AMMG technique had the advantage to depress noise and keep the detail of a signal.Compared with the envelope demodulation method and the morphological closed transformation one,simulation and test results demonstrated that the proposed AMMG technique can extract impulse signals more effectively from the original signals disturbed with strong background noise;moreover,the computation of AMMG is relatively simple and fast;it provides an effective way to extract features for fault diagnosis of roller bearings.
出处 《振动与冲击》 EI CSCD 北大核心 2011年第10期104-108,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(50705097) 河北省自然科学基金(E2007001048)
关键词 数学形态学 自适应多尺度形态梯度 滚动轴承 故障诊断 特征提取 mathematical morphology adaptive multi-scale morphological gradient(AMMG) roller bearing fault diagnosis feature extraction
  • 相关文献

参考文献5

二级参考文献48

共引文献214

同被引文献278

引证文献31

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部