期刊文献+

H_2O_2处理碳包覆铁纳米颗粒的表面特性及分散行为

Surface Properties and Dispersion Behavior of Carbon Coated Nano-particles Treated with H_2O_2
下载PDF
导出
摘要 采用体积分数30%的H2O2处理碳包覆铁纳米粒子外层的非晶态类石墨碳层,并将其超声分散于水介质中,通过改变pH值分析测定碳包覆铁纳米粒子表面zeta电位和粒径。结果表明:碳包覆铁纳米粒子非晶碳层的特殊结构可通过双氧水化学处理使其表面产生羧基和羟基;在强碱性介质下,羟基和羧基可强化颗粒间的静电斥力,提高碳包覆铁纳米粒子在水介质中的分散性能。当pH值约为11.5时,碳包覆铁纳米粒子表面zeta电位为48 mV,水合粒子粒径可达到110 nm。 Carbon coated iron nano-particles with amorphous graphite carbon layer was treated with H2O2, the volume fraction was 30%. The sample was dispersed in aqueous media by ultrasonic vibration. Zeta potential and particle size of carbon-coated iron nano-particles were measured at different pH value. The results showed that the carboxyl and hydroxyl groups emerged on the surface of amorphous carbon layer of carbon coated iron nano-particles aider chemical treatment by hydrogen peroxide. In strong alkaline medium, the hydroxyl and carboxyl groups enhanced the electrostatic repulsion between the particles and improved the dispersion of carbon coated iron nano-particles in water. Zeta potential of carbon coated iron nano-particles was 48 mV and the hydrated particle size was 110nm atpH 11.5.
出处 《中国粉体技术》 CAS 北大核心 2011年第5期45-48,共4页 China Powder Science and Technology
关键词 碳包覆纳米颗粒 化学处理 分散 carbon coated nano-partieles chemical treatment dispersion behavior
  • 相关文献

参考文献17

  • 1TEICHROEB J C, MCVEIGH P Z, FORREST J A. Influence of nano-particle size on the pH-dependent structure of adsorbed proteins studied with quantitative localized surface plasmon spectroscopy [J]. The European Physical Journal E: Soft Matter and Biological Physics, 2009, 30(2): 157-164.
  • 2KHALID A, HU L W. Laminar flow and heat transfer characteristics of nanoparticle colloidal dispersions in water[J]. Heat and Mass Transfer, 2009, 46(5) : 541-546.
  • 3LAI H Y , CHEN C H, LEE C F. Structural and optical properties of novel In2O3 nanoparticle-assembled nano-rods[J]. Plasmonics, 2010, 5(3 ) : 233-239.
  • 4KURLOV A S, REMPEL A A. Effect of WC nanoparticle size on the sintering temperature, density, and microhardness of WC-8 % Co alloys[J]. Inorganic materials, 2009, 45 (4) : 380-385.
  • 5JIANG J K, G?NTER O, PRATIM B. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies [J]. Journal of Nanopartiele Research, 2009, 11 (1): 77-89.
  • 6IKER M B, DOROTA W, PATRICK H. Characterisation of nano- particle size and state prior to nanotoxicological studies[J]. Journal of Nanoparticle Research, 2010, 12( 1 ) : 47-53.
  • 7LI L, CHEN D R. Use of an electrical aerosol detector (EAD) for nanoparticle size distribution measurement[J]. Journal of Nanoparticle Research, 2009, 11 ( 1 ) : 111-120.
  • 8WEON G S, WANG J, MICHAEL M. Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis [J]. Journal of Nanoparticle Research, 2009, 11 ( 1 ) : 163-173.
  • 9JUNG E C. CHO H R , PARK K K. Nanoparticle sizing by a laser-in- duced breakdown detection using an optical probe beam deflection[J]. Applied Physics B: Lasers and Optics, 2009, 97(4) : 867-875.
  • 10AMARANTOV S V. Nanoparticle shape reconstruction by solving the direct and inverse small-angle scattering problems for a unit potential localized inside a torus [J]. Journal of Experimental and Theoretical Physics, 2009, 108(4): 629-643.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部