期刊文献+

一个包含Smarandache函数及第二类伪Smarandache函数的方程

An equation involving the Smarandache function and the pseudo-Smarandache function of second kind
下载PDF
导出
摘要 主要研究方程Z2(n)+1=S(n)的可解性,利用初等方法以及Smarandache函数的性质,证明了该方程有无穷多个正整数解,并获得了所有正整数解的具体表现形式. The main purpose of this paper is to study the solvability of the equation Z2(n) + 1 = S(n), and give its all positive integer solutions. The elementary method and the properties of Smarandache function have been used to prove that the equation has infinite positive integer solutions, and give the exact expressions of all positive integer solutions for the equation.
作者 骞龙江
出处 《纯粹数学与应用数学》 CSCD 2011年第5期577-580,共4页 Pure and Applied Mathematics
基金 国家自然科学基金(11071194)
关键词 SMARANDACHE函数 第二类伪Smarandache函数 函数方程 正整数解 Smarandache function, the pseudo-Smarandache function of second kind, functional equation,positive integer solution
  • 相关文献

参考文献9

二级参考文献22

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2杜凤英.关于Smarandache函数S(n)的一个猜想[J].纯粹数学与应用数学,2007,23(2):205-208. 被引量:15
  • 3Smarandache F. Only Problems, Not Solutions [M]. Chicago:Xiquan Publishing House, 1993.
  • 4Liu Yaming. On the solutions of an equation involving the Smarandache function [J]. Scientia Magna, 2006, 2(1):76-79.
  • 5Jozsef Sandor. On certain inequalities involving the Smarandache function [J]. Scientia Magna, 2006, 2(3):78- 80.
  • 6Le Mohua. A lower bound for S (2^p-1(2^p- 1)) [J]. Smarandache Notions Journal, 2001, 12(1/2/3):217-218.
  • 7Apostol T M. Introduction to Analytic Number Theory [M]. New York:Springer-Verlag, 1976.
  • 8SMARANDACHE F. Only problems, not solutions [ M ]. Chicago: Xiquan Publishing House, 1993.
  • 9LIU Yaming. On the solutions of an equation involving the Smarandache function[ J]. Scientia Magna, 2006,2( 1 ) :76-79.
  • 10JOZSEF Sandor. On certain inequalities involving the Smarandache function[ J ]. Scientia Magna,2006,2 (3) :78-80.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部