期刊文献+

分数次Orlicz极大算子在齐型空间中的局部加权端点估计 被引量:1

Weighted endpoint estimates for the Orlicz fractional maximal operator on a bounded domain of homogeneous spaces
下载PDF
导出
摘要 利用齐型空间中的覆盖引理及其有界区域的二进方体分解得到了分数次Orlicz极大算子在齐型空间(X,d,μ)中的有界区域上的局部加权端点估计.该工作为分数次积分交换子[b,Iα]在欧式空间Rn中的有界区域上的加权端点弱型估计推广到齐型空间奠定了基础. In this paper, we obtained the weighted endpoint estimates of the Orlicz fractional maximal operator by use of the covering lemma and the dyadic cube decomposition of the bounded domain in the homogeneous spaces. These results lay foundation for us to extend the weighted endpoint estimates for the commutator of fractional integral operator on the bounded domain in Rn to the homogeneous spaces.
作者 田茂茜
出处 《纯粹数学与应用数学》 CSCD 2011年第5期622-627,共6页 Pure and Applied Mathematics
关键词 分数次积分交换子 齐型空间 分数次Orlicz极大算子 commutator of fractional integral operator, homogeneous spaces,Orlicz fractional maximal operator
  • 相关文献

参考文献7

  • 1Coifman R R, Rochberg R, Weiss. Factorization theorems for Hardy spaces in several variables[J]. Ann. of Math., 1976,103:611-635.
  • 2Perez C. Endpoint estimates for commutators of singular integral operators[J]. J. London Math. Soc., 1994,49:296-308.
  • 3Chanillo S. A note on commutators[J]. Indiana Univ. Math. J., 1982,31:7-16.
  • 4Cruz-Uribe D, SFO, Fioena A, et al. Endpoint estimates and weighted norm inequalities for commutators of fractional integrals[J]. Publ. Mat., 2003,47:103-131.
  • 5Cruz-Uribe D, SFO, Hartford, Fioena A, et al. Weighted endpoint estimates for commutators of fractional integrals[J]. Czechodlovak Mathematical Journal, 2007,57(132):153-160.
  • 6Chen Wengu, Sawyer E. Endpoint estimates for commutators of singular integrals on spaces of homogeneous type[J]. J. Math. Anal. Appl., 2003,282:553-566.
  • 7刘宗光,田茂茜.齐型空间中分数次积分交换子的加权端点估计[J].数学物理学报(A辑),2010,30(4):922-931. 被引量:2

二级参考文献10

  • 1陈冬香,陈杰诚.分数次积分算子的交换子在齐型空间上的弱型估计[J].数学学报(中文版),2006,49(5):973-984. 被引量:2
  • 2Chanillo S. A note on commutators. Indiana Univ Math J, 1982, 31:7-16.
  • 3Ding Yong, Lu Shanzhen, Zhang Pu. Weak type estimates for commutators for fractional integral operators. Science in China (Set A), 2001, 31:877- 888.
  • 4Cruz-Uribe D, SFO, Fioena A, Napoli. Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. Publ Mat, 2003, 47:103-131.
  • 5Cruz-Uribe D, SFO, Hartford, Fioena A, Napoli. Weighted endpoint estimates for commutators of fractional integrals. Czechodlovak Mathematical Journal, 2007, 57(132): 153-160.
  • 6Chen Wengu, Sawyer E. Endpoint estimates for commutators of singular integrals on spaces of homoge- neous type. J Math Anal Appl, 2003, 282:553-566.
  • 7Sawyer E, Wheeden R L. Weighted inequalities for fractional integrals on euclidean and homogeneous spaces. American Journal of Mathematics, 1992, 114:813-874.
  • 8Loukas Grafakos. Classical and Modern Fourier Analysis. Beijing: China Machine Press, 2005.
  • 9Garcia-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland, 1985.
  • 10Kokilashvili V M, Kufner A. Fractional integrals on spaces of homogeneous type. Comment Math Univ Carolin, 1989, 30:511-523.

共引文献1

同被引文献8

  • 1Stein E M. Singular Integral and Diffrentiability Properties of Functions[M]. Princeton: Princeton Univ. Press, 1970.
  • 2Coifman R. Distribution function inequalities for singular integrals[J]. Proc. Natl. Acad. Sci., 1972,69(10): 2838-2839.
  • 3Wilson J M. Weighted norm inequalities for the continuos square functions[J]. Trans. Amer. Math. Soc., 1989,314(2) :661-692.
  • 4Perez C. Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood Maximal functin[J]. Fourier Anal. Appl., 1997,3(6):74-756.
  • 5Lorente M, Riveros M S, de la Torre A. Weighted estimates for singular integral operators satisfying HSrmander conditions of Young type[J]. Fourier Anal. Appl., 2005,11(5):497-509.
  • 6Martell J M. Sharp maximal functions associated with approximations of the identity in spaces of homoge- neous type and applications[J]. Studia Mathematica, 2002,161(2):1-28.
  • 7Duong X T, McIntosh A. Singular integral operators with non-smooth kernel on irregular domains[J]. Rev. Mat. Iberoamericana, 1999,15(2):233-265.
  • 8Rao M M, Ren Z D. Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathemat- ics[M]. New York: Marcel Dekker Inc., 1991.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部