期刊文献+

带权函数的积分方程组正解的对称性和单调性 被引量:1

Symmetry and monotonicity for a system of integral equations with weight functions
下载PDF
导出
摘要 主要研究全空间上一类带权函数的积分方程组正解的径向对称性和单调性问题.在合适条件下,主要利用积分形式的移动平面方法,Hardy-Littlewwood-Sobolev(HLS)和Hlder不等式给出了积分方程组正解的径向对称性和单调性的结论.这一结论很好的推广了已有的结果. This paper is devoted to the study of radical symmetry and monotonicity of positive solution to a system of integral equations with weight functions. Under some proper assumptions, it has been proved that all the solutions are radial symmetric and monotone decreasing about some point by the method of moving planes integral forms, Hardy-Littewood-Soblev(HLS) and HSlder inequalities. The results complement those derived.
出处 《纯粹数学与应用数学》 CSCD 2011年第5期634-641,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(10801090) 河南省教育厅自然科学基金(2009B110009) 河南理工大学博士基金(B2008-56) 河南理工大学青年骨干教师基金(649106)
关键词 积分形式的移动平面法 径向对称性 单调性 moving planes integral forms, radial symmetry, monotonicity
  • 相关文献

参考文献10

  • 1Chen Wenxiong, Li Congming, Ou Biao. Classification of solutions for an integral equation[J]. J. Math. Anal. Appl., 2006,59:330-343.
  • 2Chen Wenxiong, Li Congming, Ou Biao. Classification of solutions for a system of integral equations[J]. Comm. Pure. Diff. Equns., 2005,30:59-65.
  • 3Lieb E. Sharp constnts in the Hardy-Littlewood-Sobolev and related inequalities[J]. Ann. of Math., 1983,118:349-374.
  • 4Chen Wenxiong, Li Congming, Ou Biao. Qualitative properties of solutions for an integral equation[J]. Disc. Cont. Dyn. Sys., 2005,12:347-354.
  • 5Fraenkel L. An Introduction to Maximum Principles and Symmetry in Elliptic Problems[M]. Cambridge: Cambridge University Press, 2000.
  • 6Chen Wenxiong, Li Congming, Ou Biao. Regularity of solutions for a system of integral equations[J]. Comm. Pure. Appl. Math., 2005,4:1-8.
  • 7Chen Wenxiong, Jin Chao, Li Congming. Weighted Hardy-Littlewood-Soblev inequalities and system of integral equations[J]. Disc. Cont. Dyn. Sys., 2005,2:164-172.
  • 8Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order[M]. New York: Springer, 1983.
  • 9Chen Wenxiong, Li Congming, Wang Guofang. On the stationary solutions of the 2D Doi-Onsager model[J]. Comm. Pure. Appl. Anal., 2010,73:2410-2425.
  • 10Chen Wenxiong, Li Congming. Methods on Some Nonlinear Elliptic Equations[M]. New york: Springer, 2010.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部