期刊文献+

Banach空间中极限集与极限算子的弱化 被引量:4

The weakness of limited set and limited operator in Banach spaces
下载PDF
导出
摘要 为了进一步研究Banach空间中集合的紧致性,受极限集与极限算子定义的启发,给出了弱极限集与弱极限算子的定义,得到了它们的等价刻画,利用空间结构与算子理想的互动关系证明了弱极限算子全体是Pietsch意义下的闭满射算子理想. For the further study of the set compactness on Banach spaces, we give the definition of weak limited set and weak limited operator in light of the definition of limited set and the limited operator, and obtain their equivalent characterization respectively. By means of the interaction between Banach spaces structure and operator ideals, it was proved that all weak limited operators between Banach spaces constitute a closed surjective general operator ideal in the sense of Pietsch.
作者 林鸿钊
出处 《纯粹数学与应用数学》 CSCD 2011年第5期650-655,共6页 Pure and Applied Mathematics
基金 2009年福建省教育厅A类科技项目(JA09072)
关键词 弱极限集 弱极限算子 算子理想 weak limited set, weak limited operator, operator ideal
  • 相关文献

参考文献10

  • 1Bourgain J, Diestel J. Limited operators and strict cosingularity[J]. Math. Nachr., 1984,119:55-58.
  • 2Galindo P. Polynomials and limited sets[J]. Proceedings of the American Mathematical Society, 1996,124:5.
  • 3Josefson B. A Banach space containing non-trivial limited sets but no non-trivial bounding sets[J]. Israel Journal of Mathematics, 1990,71:321-327.
  • 4Schlumprecht T. A limited set which is not bounding[J]. Proceedings of the Royal Irish Academy, 1990,90A:125- 129.
  • 5Schlumprecht T. Limited Set in Banach Spaces[D]. Munich: ph.D. Thesis Munich, 1988.
  • 6Schlumprecht T. Funtional Analysis:Limited Sets in Injective Tensor Products[M]. New York: Springer- Verlag, 1991.
  • 7林鸿钊.Banach空间中的极限集[J].福建农林大学学报(自然科学版),2007,36(4):440-445. 被引量:4
  • 8林鸿钊.Banach空间的极限算子[J].福建农林大学学报(自然科学版),2010,39(1):107-111. 被引量:1
  • 9钟怀杰.Banach空间结构与算子理想[M]北京:科学出版社,2005.
  • 10Gonzalez M, Martinon A. On operator ideals determined by sequences[J]. Bull. Australian Math. Soc., 1991:285-295.

二级参考文献13

  • 1BOURGAIN J,DIESTEL J.Limited operators and strict cosingularity[J].Math Nachr,1984,119:55-58.
  • 2林鸿钊.Banach空间中的极限集[J].福建农林大学学报(自然科学版),2007,36(4):440-445. 被引量:4
  • 3钟怀杰.Banach空间结构与算子理想[M].北京:科学出版社,2005.
  • 4GELFAND I. Abstrakte funktionen and linearen operatoren[J]. Math Sb, 1938,46:235 -284.
  • 5PHILLIPS R S. On linear transformations[J]. Trans Amer Math Soc, 1940,48:516 -541.
  • 6BOURGAIN J, DIESTEL J. Limited operators and strict cosingularity[J]. Math Nachr, 1984,119:55 -58.
  • 7DISTEL J. Sequences and series in Banach spaces[M]. New York: Springer-Verlag, 1984:1 -233.
  • 8王声望,郑维行.实变函数与泛函分析概要(第二版)第二册[M].北京:高等教育出版社,1992:93-94.
  • 9HOLMES R B. Geometric funtional analysis and its applications[M]. New York: Springer-Verlag, 1975:7 -8.
  • 10SCHLUMPRECHT T. Limited sets in injective tensor products-funtional analysis [ M ]. New York: Springer-Verlag, 1991 : 134 - 136.

共引文献3

同被引文献25

  • 1林鸿钊.Banach空间中的极限集[J].福建农林大学学报(自然科学版),2007,36(4):440-445. 被引量:4
  • 2EMMANUELE G.A dual characterization of Banach spaces not containing1[J].Bull Polish Acad Sci Math,1986,34:155-160.
  • 3AQZZOUZ B,BOURAS K.(L)sets and almost(L)sets in Banach lattices[J].Quaestiones Mathematics,2013,36:107-118.
  • 4ALIPRANTIS D,BURKINSHAW O.Positive operators[M].Netherlands:Springer,2006.
  • 5MEYER-NIEBERG P.Banach lattices[M].Berlin:Springer,1991.
  • 6夏道行,吴卓人.实变函数与泛函分析(下)[M].2版.北京:高等教育出版社,2010.
  • 7MOHSEN A.Weak*-Norm sequentially continuous operators[J].Math.Slovaca,2000,50:357-363.
  • 8MANIJEH S,MOHAMMAD M.The Gelfand-Phillips property in closed subspaces of some operator spaces[J].Banach J Math Anal,2011,5:84-92.
  • 9ADREWS K.Dunford-Pettis sets in the space of Bochner integrable functions[J].Math Nachr Ann,1984,241:35-41.
  • 10AQZZOUZ B,BOURAS K.Dunford-Pettis sets in Banach lattices[J].Acta.Math.Univ.Comenianae,2012,81:185-196.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部