期刊文献+

超混沌系统的函数投影同步与参数辨识

Function projective synchronization and parameter identification of hyper-chaotic system
下载PDF
导出
摘要 研究了一参数未知超混沌系统的函数投影同步问题.基于李雅谱诺夫稳定性理论,设计了实现混沌系统函数投影同步的有效非线性控制器,可以快速实现超混沌系统的加速函数投影同步,同时设计了参数控制律,有效的辨识了系统的未知参数,数值仿真验证了理论分析和数值计算的正确性. The function projective synchronization of a new four-dimensional hyper-chaotic system is studied. Based on the stability of Lyapunov theory, we designed an effective nonlinear controller which realize the function projective synchronization of the hyperchaotic system. At the same time, we designed parameter rules which realize the identification of unknown parameters. Theory analysis and numerical simulations show that the method is effective.
出处 《纯粹数学与应用数学》 CSCD 2011年第5期656-661,共6页 Pure and Applied Mathematics
基金 甘肃自然科学基金(0808-04)
关键词 超混沌系统 函数投影同步 LYAPUNOV稳定性理论 参数辨识 hyper-chaotic system, function projective synchronization, the stability of Lyapunov theory,parameter identification
  • 相关文献

参考文献8

  • 1Perora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys. Rev. Lett., 1990,64:821-5.
  • 2Hu J, Chen S H, Chen L. Adaptive control for anti-synchronization of Chua's chaotic system[J]. Phys. Lett. A, 2005,339:455-460.
  • 3Mainieri R, Rehacek J. Projective synchronization in three-dimension chaotic systems[J]. Phys. Rev. Lett., 1999,82:3042-3045.
  • 4Yalcin M E, Suykens J A K, Vanewalle J. Experimental confirmation of 3-scrolls and 5-scrolls[J]. IEEE Journal of Light Wave Techology, 1997,15(6):998-1005.
  • 5吴新星,朱培勇.关于两种混沌映射的有限乘积性质[J].纯粹数学与应用数学,2011,27(1):129-137. 被引量:5
  • 6Liu Xiaojun, Li Xianfeng, Chang Yingxiang, et al. Dynamics analysis and chaos control of a two-dimensional hyperchaotic discrete system[J]. Journal of Sichuan University: Natural Science Edition, 2008,45(3):1105.
  • 7Wen G L, Xu D. Observer-based control for full-state projective synchronization of a general class of chaotic maps in ant dimension[J]. Phys. Lett. A, 2004,33(2):420-425.
  • 8卢辉斌,李丽香,彭海朋,关新平.混沌系统的参数辨识与控制[J].系统工程与电子技术,2002,24(2):54-56. 被引量:1

二级参考文献18

  • 1叶向东,黄文,邵松.拓扑动力系统概论[M].北京:科学出版社,2008.
  • 2Li Tianyan,Yorke J.Period 3 implies chaos[J].Amer.Math.Monthly,1975,82:985-992.
  • 3Devaney R.An Introduction to Chaotic Dynamcal Systems[M].New Yorke:Addison-Weslay,1989.
  • 4Banks J,Brooks J.On definition of chaos[J].Amer.Math.Monthly,1992,99:332-334.
  • 5Huang Wen,Ye Xiangdong.Devaney chaos or 2-scattering imphes Li-Yorke chaos[a].Top.Appl.,2002,117:259-272.
  • 6Degirmenci N,Kocak S.Chaos in product maps[J],Turk.J.Math.,2009,33:1-8.
  • 7Alfredo Peris.Transitivity,dense orbits and discontinuous functions[J].Bull.Belg.Math.Soc.,1999,6:391-394.
  • 8Block L S,Coppl W A.Dynamics in one Dimension[M].Berlin:Springer-Verlag,1992.
  • 9R.Englking.General Topology[M].Warszawa:Polish Scientific Publishers,1977.
  • 10Ott E,Grebogi C,Yorke J A.Controlling Chaos[J].Phys.Rev.Lett.,1990,64: 1196-1199.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部