期刊文献+

一类分数阶微分方程的广义拟线性化方法 被引量:2

Generalized Quasilinearization for Fractional Differential Equations
下载PDF
导出
摘要 采用广义拟线性方法讨论了Caputo分数阶微分方程初值问题,给出2个单调迭代序列,证明它们一致且平方收敛于方程的解. This paper employs the generalized quasilinearization method for initial value problems of Caputo fractional differential equations,and constructs two monotone sequences,then proofs both of them converge uniformly and quadratically to the solution of the equation.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2011年第5期449-452,共4页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(10971045) 河北省自然科学基金资助项目(A2009000151)
关键词 分数阶微分方程 广义拟线性化方法 平方收敛 fractional differential equations generalized quasilinearization quadratic convergence
  • 相关文献

参考文献7

  • 1CAPUTO M. Linear models of dissipation whose Q is almost independent Ⅱ[J]. Geophys J R Astron, 1967,13 (5) :529- 539.
  • 2DIETHELM K, FORD N J. Analysis of fractional differential equations[J]. J Math Anal Appl, 2002,265 (2) : 229-- 248.
  • 3PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
  • 4GLOCKLE W G, NONNENMACHER T F. A fractional calculus approach to self simslar protein dynamics[J]. Biophys J, 1995,68(1):46--53.
  • 5KIRYAKORA V. Generalized fractional calculus and applieations[M]. New York: LongmanWiley,1994.
  • 6LAKSHMIKANTHAM V,VATSALA A S. Generalized quasilinearization for nonlinear problems[M]. Dordreeht:Kluwer Academic Publishers, 1998.
  • 7VASNUDHARA D J,MCRAE F A,DRICI Z. Generalized quasilinearization for fractional differential equations[J]. Comp Math Appl,2010,59(3) :1057--1062.

同被引文献19

  • 1LAKSHMIKANTHAM V, LEELA S, VASUNDHARA D J. Theory of fractional dynamic systems[M]. Cambradge: Cambradge Academic Publishers, 2008.
  • 2MIHAILO P L, ALEKSANDAR M S. Finite-time stability analysis of fractional order time-delay systems:Gronwall's approach[J]. Mathematical and computer Modeling, 2009, 49: 475- 481.
  • 3KATJA K. Asymptotic properties of fractional delay differential equations[J]. Applied Mathematics and Computation, 2011, 218:1515 - 1532.
  • 4ZHANG Fengrong. A survey on the stability of fractional differential equation[J]. The european physical journal special tpoies, 2011, 193:27-47.
  • 5LSKDHMIKSNYHSM V, LEELA S, SAMBANDHAM M. Lyapunov Theory for fractional differential equations[J]. Communications in Applied Analysis, 2008, 12:365- 376.
  • 6TRIGEASSOU J C, MAAMRI N, SABATIER J, et al. A Lyapunov approach to the stability of fractional differential e- quations[J]. Singnal Processing, 2011, 12:365 - 445.
  • 7LAKSHIMIKANTHAM V, LEELA S. Cone-valued Lyapunov functions[J]. Nonlinear Analysis, 1977, 1:215 -222.
  • 8LI Kaien, YANG Guowei. Cone-valued Lyapunov functions and stability for impulsive functional differential equations [J]. Nonlinear Analysis, 2008, 69:2184- 2191.
  • 9AKINYELE O, ADEYEYE J O. Cone-valued Lyapunov functions and stbility of hybrid systems[J]. Analysis, 2001, 8 203 - 214.
  • 10BHASKAR T G, LAKSHMIKANTHAM V. Set differential equations and flow invarianee[J]. Appl Anal, 2003,82~357- 368. DOI: 10. 1080/0003681031000101529.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部