摘要
对含参量广义积分的一致收敛性给予讨论,从一致收敛的定义出发给出一致收敛的充要条件,以及判断一致收敛的柯西判别法、微分法和级数判别法,并给出证明和运用实例.
The uniform convergence of the generalized integral with parameters is studied. The sufficient and necessary condition of uniform convergence is given based on the definition of the uniform convergence,and Cauchytest,differential method and series method of discriminating the uniform convergence are also given. The proofs and practical examples are also covered.
出处
《重庆工商大学学报(自然科学版)》
2011年第5期458-462,466,共6页
Journal of Chongqing Technology and Business University:Natural Science Edition
关键词
含参量广义积分
一致收敛
柯西判别法
微分法
级数判别法
generalized integral with parameter
uniform convergence
Cauchy test
differential method
series discriminating method