期刊文献+

CONVERGENCE RATE OF MULTIPLE FRACTIONAL STRATONOVICH TYPE INTEGRAL FOR HURST PARAMETER LESS THAN 1/2 被引量:1

CONVERGENCE RATE OF MULTIPLE FRACTIONAL STRATONOVICH TYPE INTEGRAL FOR HURST PARAMETER LESS THAN 1/2
下载PDF
导出
摘要 In this paper, we have investigated the problem of the convergence rate of the multiple integralwhere f ∈ Cn+1([0, T ]n) is a given function, π is a partition of the interval [0, T ] and {BtHi ,π} is a family of interpolation approximation of fractional Brownian motion BtH with Hurst parameter H 1/2. The limit process is the multiple Stratonovich integral of the function f . In view of known results, the convergence rate is different for different multiplicity n. Under some mild conditions, we obtain that the uniform convergence rate is 2H in the mean square sense, where is the norm of the partition generating the approximations. In this paper, we have investigated the problem of the convergence rate of the multiple integralwhere f ∈ Cn+1([0, T ]n) is a given function, π is a partition of the interval [0, T ] and {BtHi ,π} is a family of interpolation approximation of fractional Brownian motion BtH with Hurst parameter H 1/2. The limit process is the multiple Stratonovich integral of the function f . In view of known results, the convergence rate is different for different multiplicity n. Under some mild conditions, we obtain that the uniform convergence rate is 2H in the mean square sense, where is the norm of the partition generating the approximations.
作者 汪宝彬
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1694-1708,共15页 数学物理学报(B辑英文版)
基金 supported by the scientific research fund of Central South University for Nationalities (YZZ09005)
关键词 fractional Brownian motion TRACE Stratonovich multiple integral convergence rate fractional Brownian motion trace Stratonovich multiple integral convergence rate
  • 相关文献

参考文献1

二级参考文献5

  • 1Bardina X, Jolis M. Multiple fractional integral with Hurst parameter less than 1/2. Stochastic Processes and their Applications, 2006, 116:463-479.
  • 2Bardina X, Jolis M, Tudor C A. Convergence in law to the multiple fractional integral, Stochastic Processes and their Applications, 2003, 105(2): 315 -344.
  • 3Duncan T E, Hu Y, Pasik-Duncan B. Stochastic calculus for fractional Brownian motion. SIAM J Control Optim, 2000, 38(2): 582-612.
  • 4Hu Y. Integral transformations and anticipative calculus for fractional Brownian motions. Mem Amer Math Soc, 2005, 175(825).
  • 5Jolis M. On a multiple Stratonovich-type integral for some Gaussian processes. J Theoret Probab, 2006, 19(1): 121-133.

共引文献1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部