摘要
The sequences defined in Example 3 and Example 4 do not serve our purpose for any λ = (λn). Because this sequences are just the sequences x = (xk) = (k) and x = (xk) = (1) respectively and any term of these sequences can not be 0. In this short not we give Example 3* and Example 4* to show that the inclusions given in Theorem 2.4 and Theorem 2.9 are strict for some λ = (λn) , α and β such that 0 α β ≤ 1.
The sequences defined in Example 3 and Example 4 do not serve our purpose for any λ = (λn). Because this sequences are just the sequences x = (xk) = (k) and x = (xk) = (1) respectively and any term of these sequences can not be 0. In this short not we give Example 3* and Example 4* to show that the inclusions given in Theorem 2.4 and Theorem 2.9 are strict for some λ = (λn) , α and β such that 0 α β ≤ 1.