期刊文献+

幼年竞争瓶颈对动力学行为的影响(英文)

The Effects of Juvenile Competitive Bottleneck on Dynamic Behavior
原文传递
导出
摘要 通过建立具有非线性成熟率的食物网模型研究了幼年竞争瓶颈对种群动力学行为的影响,结论显示当竞争瓶颈比较弱的时,捕食者生活史中的幼年瓶颈对系统的影响要大于成年.模型存在两种可能的共存态或双稳定性,即消费者-捕食者和消费者平衡态共存,但是瓶颈不能诱导系统的双稳定性.进一步研究说明了选择不同的瓶颈或初始条件,瓶颈能够改变次级消费者对捕食者的净影响. The effect of juvenile competitive bottlenecks on population dynamics is investigated by formulating food web models with a nonlinear maturation rate.The food web system consists of a resource(R),an intermediate consumer(N) and a predator (P).Our results show,with weak bottlenecks,that a juvenile bottleneck in the predator's life history has a larger impact than a bottleneck in the consumer.In the food web model with bottleneck for the predator,there are two possible internal steady states,and the system can exhibit consumer-predator equilibrium and consumer equilibrium as two alternative stable states,as well as the consumer equilibrium and predator equilibrium as two alternative stable states.No bistable phenomenon induced by bottleneck can be detected,and nothing new happens in system with consumer bottlenecks.Further,we show that a bottleneck can change the net effect of the intermediate consumer on predator from facilitation to inhibition or from inhibition to facilitation,which case occurs depends on both the choice of bottleneck and the initial states of systems.
作者 唐光耀
出处 《生物数学学报》 CSCD 北大核心 2011年第3期397-405,共9页 Journal of Biomathematics
关键词 竞争瓶颈 食物网 阶段结构 双稳定性 入侵 共存 Competitive bottleneck Food web Stage structure Bistable Invasibility Coexistence
  • 相关文献

参考文献2

二级参考文献7

  • 1王凤筵,张树文.固定周期脉冲微分方程到状态依赖脉冲的转化及应用[J].生物数学学报,2005,20(2):173-178. 被引量:10
  • 2陈兰荪.数学生态模型与研究方法[M].北京:科学出版社,1991..
  • 3Arjianvanderschaft著 孙元章 刘前进 杨新林译.非线性控制中的L增益和无源化方法[M].北京:清华大学出版社,2002..
  • 4Sanyi Tang,Yanni Xiao,Lansun Chen,Robert A. Cheke. Integrated pest management models and their dynamical behaviour[J] 2005,Bulletin of Mathematical Biology(1):115~135
  • 5R. M. Corless,G. H. Gonnet,D. E. G. Hare,D. J. Jeffrey,D. E. Knuth. On the LambertW function[J] 1996,Advances in Computational Mathematics(1):329~359
  • 6Thomas D. Rogers,Zhuo-Cheng Yang,Lee-Wah Yip. Complete chaos in a simple epidemiological model[J] 1986,Journal of Mathematical Biology(2):263~268
  • 7徐洁,周义仓.具有比例和脉冲接种的乙肝流行病模型[J].生物数学学报,2004,19(2):149-155. 被引量:16

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部