摘要
在本文中,我们讨论了一类带时间延迟的Cohen-Grossberg神经网络,并研究了这个系统平衡点的全局鲁棒稳定性。利用Lyapunov函数,我们得出了全局鲁棒收敛性的几个充分条件。这些条件以线性矩阵不等式(LMI)的形式表达。因此,从计算的角度出发他们是高效的。另外,这些条件不依赖于时间延迟和神经网络的激发函数。
In this paper,we discuss a class of Cohen-Grossberg neural networks with time delay and investigate their global robust stability of the equilibrium point for this system.By use of the Lyapunov functional,a set of sufficient conditions guaranteeing the global robust convergence are derived.These conditions take the form of linear matrix inequality(LMI),hence they are computationally efficient.In addition, the conditions are independent of time delay and the amplification functions.
出处
《生物数学学报》
CSCD
北大核心
2011年第3期406-416,共11页
Journal of Biomathematics