期刊文献+

一类包虫病传播动力学模型的研究 被引量:6

Analysis of a Dynamic Model of Echinococcosis Transmission
原文传递
导出
摘要 研究了一类具有终宿主产卵期和中间宿主虫卵成熟期两时滞的包虫病传播动力学模型,得到了决定系统动力学行为的阈值R_0,当R_0<1时,证明了未感染平衡点是局部渐近稳定的;当R_0>1时,得到了感染平衡点是局部渐近稳定的充分条件。通过数值仿真验证了理论结果并探讨了时滞对系统动力学行为的影响,且发现若时滞在一定的范围内系统存在周期解. We investigate a dynamic model of echinococcosis transmission with definitive host incubation periods delay and intermediate host maturation periods delay.The threshold values which determined the dynamics behaviors of system is obtained.When R_01,the locally stability of the uninfected equilibrium is proved.When R_01,a sufficient condition of the locally stability of the infected equilibrium is obtained.The theoretics results is validated by numerical simulation and the effects of the delays to the dynamics behaviors of system is discussed.Furthermore, system exists a periodic solution if the delay in a specific ranges.
作者 赵瑜
出处 《生物数学学报》 CSCD 北大核心 2011年第3期441-450,共10页 Journal of Biomathematics
基金 宁夏自然科学基金项目(NZ10228)
关键词 包虫病 传播 时滞 稳定性 周期解 Echinococcosis Transmission Delays Stability Periodic solution
  • 相关文献

参考文献13

  • 1Yu Rong Yang. Echinococcosis in Ningxia Hui Autonomous Region, northwest China[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102(4): 319-328.
  • 2多杰才让.棘球蚴(包虫)病流行与感染情况调查[J].中国畜牧兽医,2008,35(7):101-102. 被引量:5
  • 3Philip S. Craig. Epidemiology of human alveolar echinococcosis in China[J]. Parasitology International, 2006, 55(1): 221-225.
  • 4Roberts M G, Lawson JR, Gemmell MA. Population dynamics of echinococcosis and cysticercosis: mathe- matical model of the life cycles of Taenia hydatigena and Taen'ia ovis[J]. Parasitology, 1987, 94(Pt 1):181-197.
  • 5Hirofumi Ishikawa. Mathematical modeling of Echinococcus multilocularis transmission[J]. Parasitology International, 2006, 55(1): 259-261.
  • 6Torgerson P R. The use of mathematical models to simulate control options for echinococcosis[J]. Acta Tropica, 2003, 85(2): 211-221.
  • 7Roberts M G, Aubert M F A. A model for the control of Echinococcus multilocularis in France[J]. Veterinary Parasitology, 1995, 56(1-3): 67-74.
  • 8马知恩,周义仓,主编.传染病动力学的数学建模与研究[M].北京:科学出版社,2003.
  • 9Yu YANG,Dongmei XIAO.A Mathematical Model with Delays for Schistosomiasis Japonicum Transmission[J].Chinese Annals of Mathematics,Series B,2010,31(4):433-446. 被引量:1
  • 10Shigui Ruan, Don gmei Xiao, John C. Beier. On the Delayed Ross+Macdonald Model for Malaria Transmission[J]. Bulletin of Mathematical Biology, 2008, 70:1098 1114.

二级参考文献55

  • 1杨喜陶,朱焕然.具有无穷时滞的生态竞争系统概周期解存在性[J].生物数学学报,2005,20(4):424-428. 被引量:6
  • 2李霄剑,王克.一类无穷时滞微分系统的周期解和全局吸引性[J].生物数学学报,2007,22(2):219-226. 被引量:4
  • 3Anderson,R.and May,R.,Helminth infections of humans:mathematical models,population dynamics,and control,Adv.Para.,24,1985,1-101.
  • 4Anderson,R.and May,R.,Infections Diseases of Humans:Dynamics and Control,Oxford University Press,Oxford,New York,1991.
  • 5Barbour,A.,Modeling the transmission of schistosomiasis:an introductory view,Amer.J.Trop.Med.Hyg.,55(Suppl.),1996,135-143.
  • 6Beretta,E.and Kuang,Y.,Geometric stability switch criteria in delay differential systems with delay dependent parameters,SIAM.J.Math.Anal.,33,2002,1144-1165.
  • 7Castillo-Chavez,C.,Feng,Z.and Xu,D.,A schistosomiasis model with mating structure and time delay,Math.Biosci.,211,2008,333-341.
  • 8Cooke,L.,Stability analysis for a vector disease model,Rocky Mount.J.Math.,7,1979,253-263.
  • 9Driessche,P.and Watmough,J.,Reproduction numbers and sub-thrsshold endemic equilibria for compartmental models of disease transmission,Math.Biosci.,180,2002,29-48.
  • 10Hairston,G.,An analysis of age-prevalence data by catalytic model,Bull.World Health Organ.,33,1965,163-175.

共引文献9

同被引文献28

  • 1许隆祺,陈颖丹,孙凤华,蔡黎,方悦怡,王丽萍,刘新,李莉莎,冯宇,李辉.全国人体重要寄生虫病现状调查报告[J].中国寄生虫学与寄生虫病杂志,2005,23(B10):332-340. 被引量:667
  • 2张悦,张庆灵,赵立纯.离散广义Logistic模型的混沌控制[J].生物数学学报,2006,21(3):359-364. 被引量:4
  • 3温浩.包虫病学教程[M].乌鲁木齐:新疆人民出版社,2009:75.
  • 4D. Blackmore,J.Chen,J.Perez,M. Savescu.Dynamical properties of discrete Lotka-Volterra equations[].Chaos Solitons Fractals.2001
  • 5A.S. Hacinliyan,I. Kusbeyzi,O.O. Aybar.Approximate solutions of Maxwell–Bloch equations and possible Lotka–Volterra type behavior[].Nonlinear Dynamics.2010
  • 6C.Christopher,C.Rousseau.Normalizable,integrable and linearizable saddle points in the lotka-volterra system[].Qualitative Theory of Dynamical Systems.2004
  • 7Zhu H,Campbell S A,Wolkowicz GSK.Bifurcation analysis of a predator-prey system with nonmonotonic functional response[].SIAM Journal on Applied Mathematics.2002
  • 8Yan X P,Li W T.Hopf bifurcation and global periodic solutions in a delayed predator-prey system[].Journal of Applied Mathematics.2006
  • 9Kusbeyzi I,Aybar O O,Hacinliyan A.Stability and bifurcation in two species predator-prey models[].Nonlinear Analysis:Real World Applications.2011
  • 10Liu X L,Xiao D M.Complex dynamic behaviors of a discrete-time predator-prey system[].Chaos Solitons Fractals.2007

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部