期刊文献+

液体火箭贮箱增压排液过程三种气枕模型的数值对比 被引量:9

Numerical comparison of three ullage models for the tank pressurization process of liquid rocket during outflow
原文传递
导出
摘要 针对液氧贮箱氦气增压排液过程,分别建立了零维整体模型、一维分层模型及二维计算流体力学(CFD)模型对气枕物理场的变化规律进行数值研究.零维及一维模型采用经验公式求解气枕与壁面间的换热量,而二维CFD模型通过低雷诺数k-ε模型确定流体与固壁间的耦合换热作用.计算时氦气采用理想气体模型.利用三种模型分别预测了贮箱内气枕压力、气枕平均温度及温度分布规律.计算结果表明:三组结果分布合理,不同模型的结果之间能够互相印证;对于气枕及与气枕接触壁面沿轴向的温度分布,在气枕主体区一维模型与二维模型预测结果基本吻合,而在靠近消能器的气枕上端,两种模型预测值存在偏差;当增压气体入口速度较大时,气枕上端径向温度分层明显,需采用二维CFD模型才能展示气枕物理场分布. In view of the process of helium pressurization in a liquid oxygen tank during outflow,the numerical methods of zero-dimensional integrated model,one-dimensional stratification model and two-dimensional computational fluid dynamics(CFD) model were adopted to study the variation law of ullage physical field,respectively.An empirical formula was set up to solve the heat transfer rate between ullage and tank wall in the zero-dimensional model and in the one-dimension model,while the low Reynolds number k-ε model was selected to calculate the coupled heat transfer rate between fluid and tank wall in the two-dimensional CFD model.The helium density was calculated by the ideal-gas model.The ullage pressure,ullage average temperature and temperature distribution were forecasted by these three models,respectively.The computational results show that the forecasted ullage pressure and ullage average temperature of three models show reasonable distribution,and the results of different models can be confirmed one another.In addition,the calculated axial temperature distribution in the ullage gas and in the ullage wall of the one-dimensional model is close to that of two-dimensional model in the main region,while the forecasted temperature distribution inside the ullage top nearby gas injector obviously deviates in different models.Moreover,the higher inlet velocity of the pressurized gas means more obvious radial temperature distribution inside tank top.Thus the two-dimensional CFD model should be selected to present the physical field distribution in the ullage when the inlet velocity is high.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2011年第9期1995-2001,共7页 Journal of Aerospace Power
基金 教育部高等学校博士点专项科研基金(2010020110012)
关键词 液体火箭 增压 低温流体 热分层 数值模拟 liquid rocket pressurization cryogenic fluid thermal stratification numerical simulation
  • 相关文献

参考文献11

  • 1Maiumdar A,Steadman T. Numerical modeling of pressur ization of a propellant tank[J]. Journal of Propulsion and Power,2001,17(2) :385- 390.
  • 2张超,鲁雪生,田丽亭.火箭低温液体推进剂增压系统数学模型[J].低温与超导,2005,33(2):35-38. 被引量:17
  • 3Zilliac G, Karabeyoglu M A. Modeling of propellant tank pressurization[R]. AIAA 2005 -3549,2005.
  • 4Roudebusb W H. An analysis of the problem of tank pressurization during outflow[R]. NASA TN D-2585,1965.
  • 5Stochl R J,Maloy J E, Masters P A, et al. Gaseous-helium requirements for the discharge of liquid hydrogen form a 3.96-meter-(13-ft-) diameter spherical tank[R]. NASA TN D-7019,1970.
  • 6李强,胡忠军,李青,等.低温液体推进剂增压过程计算模型[C].第七届制冷低温大会,2005:274-277.
  • 7张勇,李正宇,李强,胡忠军,李青.低温液体储箱加压排液过程计算模型比较[J].低温工程,2007(2):24-27. 被引量:10
  • 8Barsi S,Kassemi M. Numerical and experimental comparisons of the self-pressurizaton behavior of an LH2 tank in normal gravity[J]. Cryogenics,2008,48(3-4) :122-129.
  • 9Barsi S, Moder J, Kassemi M. Numerical investigation of LO2 and LCH4 storage tanks on the lunar surface[R]. AIAA 2008 4749,2008.
  • 10Barsi S,Panzarella C H, Kassemi M. An active vapor approach to modeling pressurization in cryogenic tanks[R]. AIAA 2007 5553,2007.

二级参考文献13

  • 1Neil T, Van Dresar. Prediction of Pressurant Mass Requirements for Axisymmetric Liquid Hydrogen Tanks. Journal of Propulsion and Power, 1997,1:3(6) : 1:35-- 14:3.
  • 2Coxe E F, Tatom J W. Analysis of the Pressuring gas requirements for an evaporated propellant pressurization system.Advances in cryogenic engineering, 1962,7 : 234-- 240.
  • 3Momenthy A M. Propellant Tank Pressurization-- system Analysis. Advances in cryogenic engineering, 1964,9 : 273-283.
  • 4Arthurae, Elliotr, Jamesab, et al. Rocket propellant and pressurization systems, by Prentice Hall, Inc. Englewood Cliffs, N.J. 1964.
  • 5汪荣顺.[D].上海:上海交通大学,2001年2月.
  • 6李强,胡中军,等.低温液体推进剂增压过程的计算.第七届全国低温与制冷工程大会论文集.2005:274-277.
  • 7John I Hoehstein, Hyun Chul Jit, Jhon C Aydelot J. Propulsion,1990,6(1):11-17
  • 8Pearson C D, Dahlenee D, Martin W. Liquid expulsion by direct pressurization of a spinning propellant tank. AIAA Paper, No. 69-527 : 1-7
  • 9Philip A Masters, Lewis Research Center. Computer programs for pressurization and pressurized expulsion from a cryogenic liquid propellant tank. NASA TND-7504, 1974
  • 10Alok Majumdar, Todd Steadman. Numerical modeling of pressurization of a propellant tank. AIAA 99-0879, 1999:1-8

共引文献42

同被引文献58

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部